

FINAL MITIGATION PLAN

July 2020

BANNER FARM MITIGATION SITE

Henderson County, NC NCDEQ Contract No. 7530 DMS ID No. 100062

French Broad River Basin HUC 06010105

USACE Action ID No. SAW-2018-01153 RFP #: 16-007334

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc. 167-B Haywood Rd Asheville, NC 28806 Phone: (828) 774-5547

DRAFT MITIGATION PLAN

BANNER FARMS MITIGATION SITE

Henderson County, NC NCDEQ Contract No. 7530 DMS ID No. 100062 French Broad River Basin HUC 06010105

USACE Action ID No. SAW-2018-01153

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc. 167-B Haywood Rd Asheville, NC 28806 Phone: (828) 774-5547

This mitigation Plan has been written in conformance with the requirements of the following:

- Federal rule for compensatory mitigation project sites as described in the Federal Register Title 33 Navigation and Navigable Waters Volume 3 Chapter 2 Section § 332.8 paragraphs (c)(2) through (c)(14).
- NCDEQ Division of Mitigation Services In-Lieu Fee Instrument signed and dated July 28, 2010.

These documents govern DMS operations and procedures for the delivery of compensatory mitigation.

Contributing Staff:

Eric Neuhaus, PE, Project Manager Jake McClean, PE, Water Resources Engineer Shawn Wilkerson, Principal in Charge Jacob Wiseman, Designer Mimi Caddell, Lead Scientist Scott Gregory, Senior Scientist Jordan Hessler, Scientist Emily Reinicker, PE, Lead Quality Assurance

DEPARTMENT OF THE ARMY WILMINGTON DISTRICT, CORPS OF ENGINEERS 69 DARLINGTON AVENUE WILMINGTON, NORTH CAROLINA 28403-1343

June 12, 2020

Regulatory Division

Re: NCIRT Review and USACE Approval of the NCDMS Banner Farm Mitigation Site / Henderson Co./ SAW-2018-01153/ NCDMS Project # 100062

Mr. Tim Baumgartner North Carolina Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

Dear Mr. Baumgartner:

The purpose of this letter is to provide the North Carolina Division of Mitigation Services (NCDMS) with all comments generated by the North Carolina Interagency Review Team (NCIRT) during the 30-day comment period for the Banner Farm Draft Mitigation Plan, which closed on May 8, 2020. These comments are attached for your review.

Based on our review of these comments, we have determined that no major concerns have been identified with the Draft Mitigation Plan, which is considered approved with this correspondence. However, several minor issues were identified, as described in the attached comment memo, which must be addressed in the Final Mitigation Plan.

The Final Mitigation Plan is to be submitted with the Preconstruction Notification (PCN) Application for Nationwide permit approval of the project along with a copy of this letter. Issues identified above must be addressed in the Final Mitigation Plan. All changes made to the Final Mitigation Plan should be summarized in an errata sheet included at the beginning of the document. If it is determined that the project does not require a Department of the Army permit, you must still provide a copy of the Final Mitigation Plan, along with a copy of this letter, to the appropriate USACE field office at least 30 days in advance of beginning construction of the project. Please note that this approval does not preclude the inclusion of permit conditions in the permit authorization for the project, particularly if issues mentioned above are not satisfactorily addressed. Additionally, this letter provides initial approval for the Mitigation Plan, but this does not guarantee that the project will generate the requested amount of mitigation credit. As you are aware, unforeseen issues may arise during construction or monitoring of the project that may require maintenance or reconstruction that may lead to reduced credit.

Thank you for your prompt attention to this matter, and if you have any questions regarding this letter, the mitigation plan review process, or the requirements of the Mitigation Rule, please call me at 919-554-4884, ext 60.

Sincerely,

Kim Browning Mitigation Project Manager *for* Tyler Crumbley

Enclosures

Electronic Copies Furnished:

NCIRT Distribution List Matthew Reid, Paul Wiesner—NCDMS Eric Neuhaus, John Hutton—WEI

CESAW-RG/Browning

May 28, 2020

MEMORANDUM FOR RECORD

SUBJECT: Banner Farm Mitigation Site - NCIRT Comments during 30-day Mitigation Plan Review

PURPOSE: The comments listed below were received during 30-day comment period in accordance with Section 332.8(g) of the 2008 Mitigation Rule in response to the Notice of NCDMS Mitigation Plan Review.

NCDMS Project Name: Banner Farm Mitigation Site, Henderson County, NC

USACE AID#: SAW-2018-01153 NCDMS #: 100062 30-Day Comment Deadline: May 8, 2020

DWR Comments, Mac Haupt & Erin Davis:

- Page 3, Section 3.3 It's stated that watershed processes and stressors from outside the project are likely to remain consistent through project closeout. What about after closeout? Please consider potential future land use changes in evaluating project risks and uncertainties for longterm site stability and protection (e.g. risk of encroachment). This could include consulting utility companies, local/county planning departments and NCDOT on anticipated projects in the vicinity.
- 2. Page 6, Table 5 Wetland restoration requires the uplift of multiple functions. Shouldn't hydrologic and vegetative methods be listed for wetland areas proposed for restoration?
- 3. Page 9, Section 3.6 For existing culvert crossings proposed to remain, please include a description of their current condition to confirm that sizing is appropriate and that they are not perched, buried or otherwise inhibiting aquatic passage.
- 4. Page 13, Section 5.0 This Plan does not include a "Site Constraints to Functional Uplift" subsection. DWR considers easement breaks as site constraints since fragmentation impacts the site's potential functional uplift. Please include a discussion on the coordination completed to minimize the quantity and width of proposed stream crossings. Is herbicide spraying a standard maintenance activity implemented within these utility corridors?
- 5. Page 33, Section 8.6.4 DWR is concerned with proposed wetland restoration areas represented by cross-section #4 on Sheet 3.4 and cross-section #6 on Sheet 3.5 where 2-3 feet of soil will be excavated. DWR supports a wetland creation credit ratio of 3:1 for areas excavated more than 12 inches. Additionally, DWR is concerned about the drainage effect these cut areas will have on adjacent proposed wetland restoration areas and we request groundwater gauges be placed to demonstrate the attainment of the 12% hydroperiod.
- 6. Page 35, Section 8.7.1 The proposed work on Banner Creek Reach 1 appears more associated with an Enhancement 1 approach, additional justification is needed to support

Restoration credit. DWR is concerned about tree mortality if a restoration scale approach is implemented.

- 7. Page 34, Section 8.7.1 Since establishment of vegetative cover and vigor can be a challenge on Priority II restoration banks/benches, please include a discussion on how the soil restoration will be addressed during construction and reference potential adaptive management.
- Page 36, Section 8.7.2 DWR would like to see trees removed during construction, which are not used for in-stream structures or habitat, be scattered as LWD within wetland restoration areas. Also, wetland areas should be disked to reduce compaction and DWR would prefer furrows not exceed a depth of 6 inches.
- 9. Page 36, Section 8.8
 - a. Please identify the target community types.
 - b. Please indicate if fescue will be treated prior to or during site construction. DWR recommends early treatment based on observations of fescue impeding planted vegetation establishment and vigor.
 - c. Please reference the planting window specified in the 2016 NCIRT Mitigation Update Guidance.
- 10.Page 37, Section 8.9 Please confirm whether any maintained pedestrian trails for future hunting activities are proposed within the mitigation site. If so, approximate locations of trails should be shown on the site figure or design drawings. DWR does not support any new vehicle access paths/roads, including for ATV use, within the site.
- 11. Page 37, Section 8.10 Table 17 is a helpful summary of easement break information, could you possibly add whether the breaks include culvert crossings and if the culverts will remain or be replaced. Also, based on the number of Duke Energy utility easement breaks and the proposed work to be completed within their easements (e.g. channel filling, culvert removal), please provide a brief summary of the coordination and authorization process.
- 12. Page 39, Section 9.4 DWR appreciates that gauge ground surface elevation and soil profile data will be recorded and included in the MY0 Report.
- 13.Page 40, Section 10.0 DWR requests the inclusion of red-line drawings in the baseline monitoring report comparing record drawings to final mitigation plan design sheets.
- 14. Page 41, Table 18 Please remove the phrase "based on the soil type". The proposed 12% hydroperiod applies to all wetland restoration areas as stated in Section 9.4.
- 15. Page 42, Section 10.1 Please also include visual monitoring photo locations at proposed crossings.
- 16. Page 43, Section 11.0
 - a. Please specific an expected maximum duration between "periodic" inspections.
 - b. Adequate signage should be installed along CE boundaries abutting utility corridors and road right-of-ways that are regularly maintained. Of particular concern are the two cut outs for individual utility poles along Banner Farm Road.
- 17.Page 44, Section 12.0 Please include the IRT/DWR in adaptive management planning coordination.
- 18. Page 44, Section 13.0 DWR would support a 2:1 ratio for wetland rehabilitation areas as being more representative of the functional uplift delta based on existing wetland hydrology, soils and vegetation.
- 19. Figure 10 DWR requests one additional gauge and five groundwater gauge relocations see figure markup (attached).
- 20. Appendix 7 Please include the coordinates for the Sierra Nevada well location.
- 21. Appendix 8
 - a. Sheet 0.3 For clarity, can you please reference the "CR, JR, CH, RR" used within the proposed bankfull icon on the plan views.
 - b. Sheet 0.3 It would help our review to see the existing channel areas proposed to be filled as a shaded feature on the plan view sheets.

- c. Sheet 2.1.4 There appears to be an existing stormwater pipe that discharges within the proposed easement. Please confirm that this structure will be removed.
- d. Sheet 2.2.1 Please explain the design rationale for starting UT1 west of the existing channel rather that to the east. The original concept plan shows the UT1 relocated east of the existing channel where there appears to be area to achieve moderate sinuosity between stream crossing constraints. DWR is concerned about the current design's high sinuosity with regard to long-term stability and adequate sediment transport.
- e. Sheet 4.1
 - i. American beech is listed twice under the open area buffer planting.
 - ii. Please confirm that the appropriate stratum is listed for the buffer zone species.
 - iii. DWR appreciates the diversity of species and stratum incorporated into the buffer and riparian zone planting lists. However, the wetland planting zone accounts for approx. 80% of the site's planting area and only has 6 species proposed, of which 3 species comprise 75% of the total stems. Since red maple is already present at the site, it should be removed from the planting list. DWR requests that the wetland planting list be revisited to enhance species and stratum diversity, with no single species comprising more than 20%.
- f. Sheet 6.2 DWR recommends footer logs be incorporated in all log sills.
- g. Sheet 6.3 Please rename Lunker Log or Cover Log for consistency with legend icon.
- h. Sheet 6.4 Where is channel stabilization (fully lined with erosion control matting) proposed?
- 22. Appendix 9 DWR appreciates the removal technique details included. The kudzu and bamboo onsite are particularly concerning. Please identify which species were treated and where in the annual monitoring reports.
- 23. Appendix 10 DWR appreciated the site-specific maintenance plan, including mention of visits after major flooding events.

NCWRC Comments, Andrea Leslie:

- 1. There will not be a trout moratorium required for this project.
- 2. The reestablishment and rehabilitation of nearly 40 acres of wetland in the French Broad floodplain is very exciting. Many of the French Broad floodplain wetlands have been lost, and this project has the opportunity to provide an important ecological role for the area, especially in terms of habitat.
- 3. Please provide a single map that shows the planting plan for the entire site, noting where the different zones of plantings will occur (e.g., wetland, open area buffer planting, partially vegetated area buffer planting, riparian planting).
- 4. We appreciate the planting plan for the open area buffer, partially vegetated area buffer, and riparian planting zones. Good attention has been given to canopy, shrub/subcanopy, and herbaceous strata. We recommend removing silver maple from the planting list, as it can be invasive. It is known from wetlands in Henderson County, but it will likely come in on its own.
- 5. However, the wetland planting plan only consists of 6 tree species, with no other strata (including herbaceous) addressed. As the wetland acreage of this site is significant, we ask the designer to round out their wetland planting plan with other strata and with a more diverse tree list. Were the Sierra Nevada wetland and Henry Fork wetland used as plant reference sites? If so, the Henry Fork site may not be the best reference for vegetation, given it is a piedmont site. Given its setting, we recommend gearing this to the Montane Alluvial Forest Large River Subtype in the Guide to the Natural Communities of North Carolina (see https://files.nc.gov/dncr-nhp/documents/files/Natural-Community-Classification-Fourth-Approximation-2012.pdf <Blockedhttps://files.nc.gov/dncr-nhp/documents/files/Natural-Community-Classification-Fourth-Approximation-2012.pdf). NCWRC is open to working with Wildlands on the planting plan.</p>

- 6. We consulted with the NC Natural Heritage program and offer the following recommendations on the planting plan:
 - a. Trees: Eliminate Willow Oak, as it is not a Blue Ridge species. We recommend eliminating Red Maple as well, as it will come in on its own. Here is a list of tree species that would be worthy additions Box Elder, Black Willow, River Birch, Tulip Poplar, Shingle Oak, Black Gum, Pitch Pine (on hummocks, higher ground). We recommend bringing in at least 4 of these species into your planting plan.
 - b. Shrubs/understory trees: Develop a list of shrubs/smaller trees, considering Sweetspire, Viburnum rufidulum, Viburnum prunifolium, Viburnum nudum, Leucothoe racimosa, Leucothoe fontanesiana, Spice Bush, Buttonbush, Sweet Birch, Ironwood, American Holly, River Birch.
 - c. Herbaceous species: We assume that the designer already has a set of species for the wetland herbaceous layer that didn't make it into the plan. Worth adding to this list would be Cinna arundinacea, Glyceria striata, Glyceria septentrionalis, Virginia Wildrye, River Oats.
- 7. We encourage Wildlands to incorporate rivercane into their project. Rivercane is found on the French Broad River floodplain; it has been eliminated from much of its former extent in western NC, and there is a renewed effort to reestablish this species.

USACE Comments, Kim Browning:

- 1. Please add some discussion regarding the outlet at STA 37+97 to the French Broad River since this area is prone to backwater flooding.
- Figure 6 shows existing groundwater gages, while Figure 11 shows gages in different locations. Will the existing gages still be monitored, or just moved during construction? It would be beneficial to have gages in approximately the same areas to compare pre and post construction data and justify functional uplift.
- 3. Please remove red and silver maple from the planting plan.
- 4. Table 5: It would be beneficial to show the current NCSAM rating in this table.
- 5. Rehabilitation areas indicate that hydrology is already above 12% and are currently jurisdictional and providing wetland functions. This would be more appropriate for an enhancement ratio of 2:1 based on functional uplift.
- 6. Page 33: There is concern with proposed wetland restoration areas where more than 12" of soil will be excavated. The text cites that 12% of reestablishment and 18% of rehab wetlands will be graded deeper than 12", which is a considerable amount. Typically, these areas would be more appropriate for a wetland creation credit ratio of 3:1; however, after receiving clarification from WEI, I feel more comfortable that the grading is to support the slope requirements for the stream restoration. Attached is additional information received from WEI to justify that the grading is not for wetland hydrology needs.
- 7. Given the flat slope and the huge sediment load coming into the system from The French Broad River, there is concern that without sufficient flow, the stream channels may fill in with sediment and become more wetland-like.
 - a. Section 9.1.1: Recommend adding a performance standard to maintain channel characteristics and an OHWM. Backwater flooding of the French Broad River will likely cause aggradation, and clearing sediment and vegetation from the channel after monitoring year two is not recommended.
- 8. Figure 6 shows Wetland T, but Figure 10 shows this area as a small tributary. Table 9 indicates that this area will have a temporary impact of 0.04 ac from floodplain grading. Please clarify what is happening in this area when submitting the PCN.
 - a. Additionally, please estimate the number or acres of trees to be cleared to address the NLEB 4(d) rule.

- b. When submitting the PCN, please combine all impacts by reach. For example, if there are three 60' culverts on reach 1, list it as 180' of permanent impact rather than listing it as three separate impacts. But permanent and temporary impacts still need to be separated.
- 9. Reach 1, as presented, seems to be more appropriate as an enhancement level 1 reach at 1.5:1. Please provide additional justification why this reach is proposed as restoration at 1:1.
- 10. Section 8.7.2: It would be beneficial to add some coarse woody debris to the depressional areas in the buffers and throughout the adjacent wetlands for habitat, and to help store sediment, increase water storage/infiltration, and absorb water energy during overbank events. I was pleased to see the inclusion of wood in the stream design for habitat.
- 11. Section 8.8: In addition to the planting plan in the design sheets, it would be helpful to see a map view of the different planting zones.
- 12. Section 8.9: It would be beneficial to add a discussion regarding utility line maintenance and potential for the road culverts to be replaced in the future.
- 13. What is the situation with Banner Creek Reach 2, above Banner Farm Road, where no channel work is proposed?
- 14. There is a section of Banner Creek Reach 3 that runs under the powerline. Please clarify that this is a non-credited section.
- 15. Recommend adding a performance standard for invasive species to be less than 5% of the conservation easement, and a zero tolerance for kudzu and bamboo.
- 16. Table 18: The IRT prefers the use of pressure transducers over crest gages.

Kim Browning Mitigation Project Manager Regulatory Division

Memorandum to the Record May 6, 2020

Agency Comments for the Banner Farm Stream and Wetland Mitigation Site (SAW-2018-01153) Mitigation Plan Associated with the NCDMS In-Lieu Fee Program in Henderson County, NC

Kim,

Thank you for the opportunity to provide feedback and comments on the Banner Farm Stream and Wetland Mitigation Site (the Site or Project) Mitigation Plan as an addition to the North Carolina Division of Mitigation Resources In-Lieu Fee Program (NCDMS ILF). Wildlands Engineering, Inc., has presented a potentially suitable plan to provide compensatory mitigation for jurisdictional wetland impacts associated with the US Army Corps of Engineers Clean Water Act Section 404 permit program. The project involves the restoration of approximately 6,300 existing linear feet of incised and straightened streams and the restoration of over 35.7 acres of historically altered wetlands. Restoration of project streams and wetlands will provide 6,294 cool stream mitigation units (SMUs) and 34.8 wetland mitigation units (WMUs). The Site will be protected by a 46.6-acre conservation easement and was selected by NCDMS to provide SMUs and WMUs in the French Broad River Catalog Unit 06010105 (French Broad 05). No nutrient offsets or riparian buffers are presented specifically for additional compensatory mitigation credit.

Note: It is understood that site visits have been made by IRT members during the development of site feasibility to provide mitigation credit. In that regard, I feel it necessary to denote that I have not been on-site during this process and that my comments may reflect a lack of on-site observation and evaluation.

The EPA Region 4 Ocean, Wetlands and Stream Protection Branch offers the following sitespecific comments as they pertain to the Banner Farm Draft Mitigation Plan dated April 1, 2020. Page numbers refer to the entire pdf document offered for review:

- Section 6.0/Page 29 Regulatory Considerations:
 - Recommend citing the Public Notice issued under Section 404 (SAW-2018-01153) on August 28, 2018.
- Section 8.7/Page 35 Project Implementation:
 - Sponsor may want to state actual buffer widths along Banner Creek. According to the plans/drawings the buffer appears to be 50' in width along the entire Banner Creek Reach 1. I wish to commend Wildlands for providing minimum buffer widths of 50 feet or more throughout the project.
- Section 8.8/Page 50 Vegetation and Planting Plan (see Sheet 4.1 also)
 - Sponsor needs to justify the choice of *Quercus falcata* var *pagodifoli*a for this site. That tree species is chiefly found in the coastal plain and is not known in NC

mountain counties such as Henderson. (source: Radford et. al. Manual of Vascular Flora of the Carolinas 1964)

- Recommend removing *Alnus serrulata* listed as an Alternate and replaced with a more suitable canopy reaching species.
- Section 8.9/Page 51 Project Risk and Uncertainties
 - Has the sponsor considered expanding the project further south of the UT2 wetland area to capture more of the agriculture area and include it within the CE? It sounds like the landowners would be fine with abandoning the field if they could still hunt on it. Are there cost considerations and a lack of wetland credits needed?
- Section 9.2/Page 53 Vegetation.
 - Plot number (24 fixed and 12 mobile) and size (0.024 ac or 100m²) should be included here. (per Table 19)
- Table 18/Page 55: Monitoring Plan
 - Recommend adding stem heights for MY 5 and MY 7 in vegetation.

Thank you for the opportunity to provide feedback, comments and concerns with the Banner Farm Stream and Wetland Draft Mitigation Site Plan in Henderson County, NC. The sponsor has provided a potentially suitable plan to offset impacts and provide compensatory stream and wetland credits to the NCDMS ILF program within the French Broad 05 watershed geographic service area. If you or the sponsor have any questions or need clarification on any of the comments stated above, please contact me at 404-562-9225 or at bowers.todd@epa.gov.

Best Regards,

Todd Bowers

Comments submitted to Kimberly Brown (SAW-PM) via email on May 6, 2020

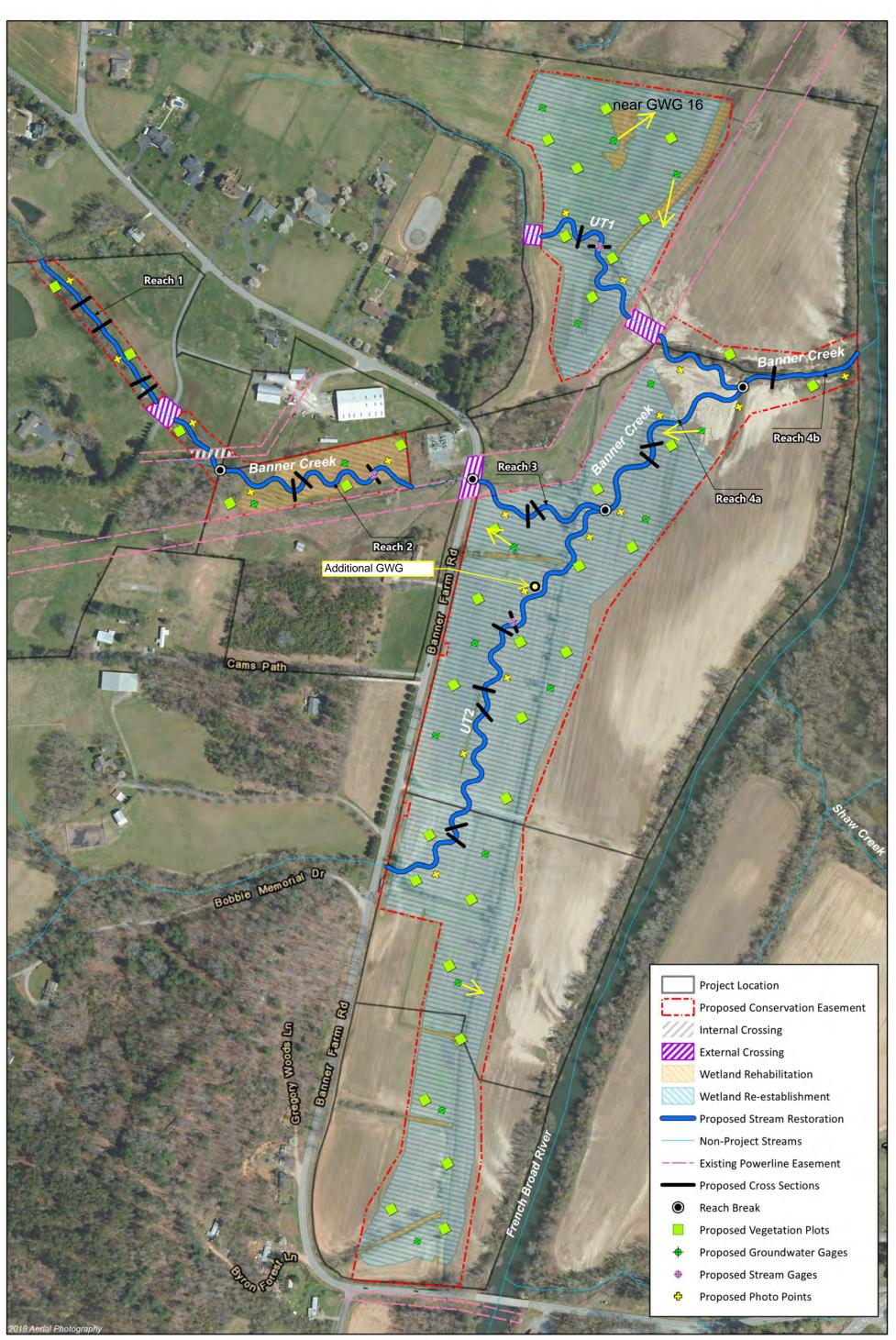
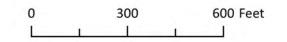



Figure 11 Monitoring Components Map Banner Farm Mitigation Site French Broad River Basin 06010105

Henderson County, NC

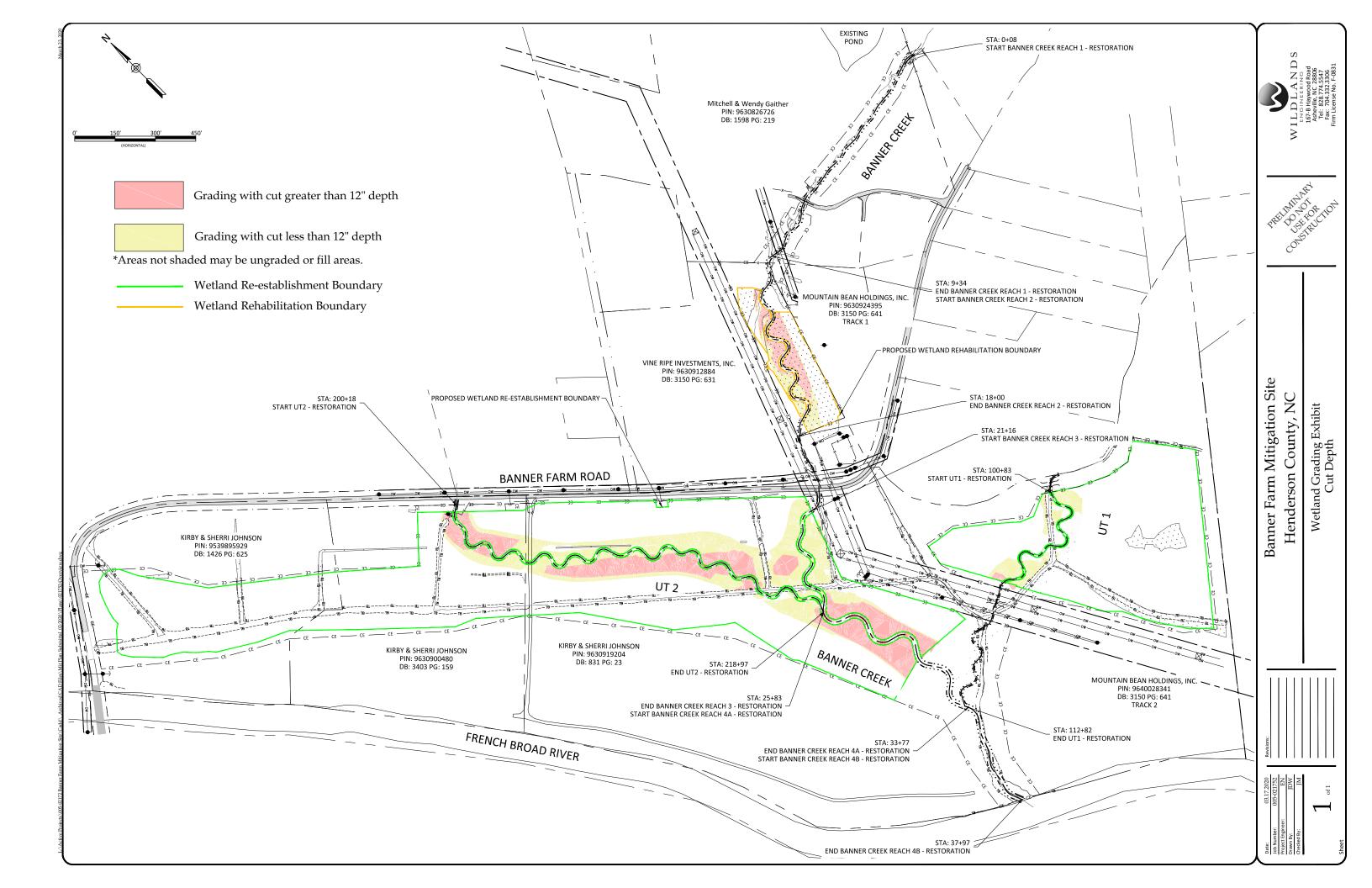
From: Eric Neuhaus <<u>eneuhaus@wildlandseng.com</u>>
Sent: Thursday, May 28, 2020 1:27 PM
To: Browning, Kimberly D CIV USARMY CESAW (USA) <<u>Kimberly.D.Browning@usace.army.mil</u>>
Cc: Reid, Matthew <<u>matthew.reid@ncdenr.gov</u>>; John Hutton <<u>jhutton@wildlandseng.com</u>>
Subject: Banner Farms Wetland Grading: Mit Plan Discussion

Kim,

I wanted to follow up after our phone conversation yesterday regarding Banner Farms, the potential wetland grading, and the proposed crediting ratios within the submitted mitigation plan. I understand the concerns regarding the wetland grading depths over 12 inches. As we discussed on the phone, the grading within the proposed wetland areas is not dictated by wetland hydrology or the exposure of relic hydric soils, but rather the removal of extensive agricultural manipulation and the overall function of the stream/wetland complex as it relates to sediment transport and existing grade constraints.

Design evaluations and site observations indicate that a high sand load from the French Broad River is regularly delivered to the project streams through either overbank events and/or backwater conditions. Based on these observations, channel aggradation was identified as a fundamental risk to project assets, particularly stream crediting. To alleviate this design risk, minimum bankfull stream slopes of 0.1% were maintained for the designed channels. Pool slopes were held at zero, and riffles were shortened where possible to increase slopes (>0.2%) and maintain adequate stream power to flush high sand loads from the built channels incurred from the French Broad River. To maintain these slopes and work within existing site constraints, grading over 12 inches was required within proposed wetland areas. The grading was minimized as much as possible and only represents 4.47-acres of the proposed 35.78-acres of restored wetland as indicated in the NCDMS comment responses and the associated wetland grading exhibit provided with the NCDMS comments.

The upstream end of UT2, where the stream is being transitioned to a Priority 1 approach from the Banner Farm Road culvert represents 0.5 acres of the cut that exceeds 12 inches. Additionally, the agricultural berm/channel side cast material between the old channel of UT2 and the proposed alignment of UT2, which can be seen in Sheet 3.3 in wetland cross sections 2 and 3 represents 1.2 acres of cut that exceeds 12-inches. I highlight these areas to further emphasize that grading depths were a product of stream design, site constraints, and agricultural manipulation. While I understand the concern regarding the grading depths, I believe the design of the streams and their associated slopes is pivotal to the success of the project as a stream and wetland complex.


If you have questions or want to discuss further, feel free to reach out.

Thanks!

.....

Eric Neuhaus, PE | *Water Resources Engineer* **O**: 828.774.5547 x105 **M**: 865.207.8835

Wildlands Engineering, Inc. 167-B Haywood Road Asheville, NC 28806

July 8, 2020 ATTN: CESAW-RG/Browning Ms. Kim Browning US Army Corps of Engineers – Wilmington District 69 Darlington Avenue Wilmington, NC 28403-1343

RE: Banner Farm Mitigation Site Henderson County, NC Response to NCIRT Comments during 30-day Mitigation Plan Review USACE Action ID No: SAW-2018-01153 DWR Project ID: 20181032 NCDMS Project No: 100062

Dear Ms. Browning:

Wildlands Engineering, Inc. (Wildlands) has reviewed DWR's, NCWRC's, USACE's, and US EPA's comments from the Banner Farm Mitigation Plan package. The following Wildlands responses to DWR's, NCWRC's, USACE's, and USEPA's comments are noted below.

DWR Comments, Mac Haupt & Erin Davis:

 Page 3, Section 3.3 – It's stated that watershed processes and stressors from outside the project are likely to remain consistent through project closeout. What about after closeout? Please consider potential future land use changes in evaluating project risks and uncertainties for long-term site stability and protection (e.g. risk of encroachment). This could include consulting utility companies, local/county planning departments and NCDOT on anticipated projects in the vicinity.

Wildlands Response:

Based on Wildlands evaluation of the watershed over the last 60 years, it is anticipated that the watershed will maintain its low density residential, rural, and agricultural make-up beyond the close-out period. The current Horse Shoe Community Plan defines zoning within the watershed as Residential 2 – Rural, Residential 2, and some R-40, with major areas of the watershed defined with farmland or agriculture-horticulture designations. It is proposed within the planning document that the R-40 zoning area within the watershed be rezoned to standard density R2, consistent with current low-density rural development in the watershed. Current stormwater regulations implemented by Henderson County within the water supply watershed should mitigate potential hydrologic effects from future development to the Site long term. Banner Farm Road is briefly discussed within the planning documentation, but there is no indication that the road experiences heavy traffic or will need to be widened based on anticipated future development. The conservation easement is subject to the full right of way of Banner Farm Road and the easements of Duke Power and Southern Bell and all appropriate title work was obtained during the process of recording the conservation easement. Wildlands does not anticipate any future risk to the conservation easement based on the existing planning documents, proposed Site design, and current title information obtained while recording the conservation easement.

2. Page 6, Table 5 – Wetland restoration requires the uplift of multiple functions. Shouldn't hydrologic and vegetative methods be listed for wetland areas proposed for restoration?

Wildlands Response:

Wildlands identifies the most pertinent method of restoration or enhancement within Table 5. Table 5 is intended to document the condition of existing wetlands. Proposed restoration and anticipated uplift are outlined and detailed within many other sections of the report (including Section 5.0, Section 7.0, Table 10, and Section 8.6).

3. Page 9, Section 3.6 – For existing culvert crossings proposed to remain, please include a description of their current condition to confirm that sizing is appropriate and that they are not perched, buried or otherwise inhibiting aquatic passage.

Wildlands Response:

Three existing culverts which are outside the conservation easement on project streams are proposed to remain in place. On Banner Creek they include the landowner driveway crossing at Station 6+73 (Reach 1) and the NC DOT culvert under Banner Farm Road at Station 19+98 (Reach 3). Additionally, at the upstream extents of UT2 (Station 200+00) there is an existing NCDOT culvert under Banner Farm Road. Current crossing conditions are outlined below, however, it should be noted that it was discussed with the NCIRT at the post-contract field walk that given the locations of the crossings, these crossings would not be reset or replaced as part of the project mitigation.

The landowner driveway crossing on Banner Creek (Reach 1, Station 6+73) consists of a 72" corrugated metal pipe (CMP) that is approximately 20 feet long. The metal pipe is incorporated into a rock and concrete crossing. The culvert was assessed to be in good condition with no perching or buried inlets. The design slope of the culvert is 0.3% and modeling showed the culvert should pass approximately 210 cfs (about a 10-year flow event) before overtopping occurs. During base flow conditions outlet velocities are estimated below 2 ft/s, ideal for aquatic organism passage.

The NCDOT culvert under Banner Farm Road (Reach 3, Station 19+98) consists of approximately 42 linear feet of 60" CMP. The culvert was assessed to be in good condition and no perching or buried inlets were noted. Wildlands has proposed a rock sill just downstream of the culvert at Station 20+43 to hold grade through the culvert and reduce the potential for channel degradation downstream of the culvert, which often results in a perched condition. The design slope of the culvert is 0.77% and modeling showed the culvert should pass approximately 185 cfs (between a 5-yr and 10-year flow event) before overtopping occurs. During base flow conditions outlet velocities range between 2 ft/s and 3 ft/s which should allow for aquatic organism passage upstream through the culvert.

The NCDOT culvert located where UT2 passes under Banner Farm Road and then enters the project area (Station 200+00) is a 72" CMP that is approximately 30 feet long. The culvert was assessed to be in good condition and no perching or buried inlets were noted. Wildlands has proposed a constructed riffle ending with a rock sill just downstream of the culvert outlet (Station 200+18 to 200+53) to hold grade through the culvert and reduce the potential for channel degradation below the culvert. The slope of the culvert is 0.2% and modeling showed the culvert should pass over 200 cfs before overtopping, more than a 50-yr event for this small watershed. During base flow conditions outlet velocities range between 0.5 ft/s and 1 ft/s which should allow for aquatic organism passage upstream through the culvert.

4. Page 13, Section 5.0 – This Plan does not include a "Site Constraints to Functional Uplift" subsection. DWR considers easement breaks as site constraints since fragmentation impacts the site's potential functional uplift. Please include a discussion on the coordination completed to minimize the quantity and width of proposed stream crossings. Is herbicide spraying a standard maintenance activity implemented within these utility corridors?

Wildlands Response:

A description of the proposed conservation easement breaks, their proposed use (culvert, utility, etc.), and associated maintenance and coordination are included in Table 17, Section 8.10, and Figure 10.

5. Page 33, Section 8.6.4 – DWR is concerned with proposed wetland restoration areas represented by cross-section #4 on Sheet 3.4 and cross-section #6 on Sheet 3.5 where 2-3 feet of soil will be excavated. DWR supports a wetland creation credit ratio of 3:1 for areas excavated more than 12 inches. Additionally, DWR is concerned about the drainage effect these cut areas will have on adjacent proposed wetland restoration areas and we request groundwater gauges be placed to demonstrate the attainment of the 12% hydroperiod.

Wildlands Response:

Wetland grading and associated crediting is discussed within the email correspondence with Kim Browning provided with these comments as well as Wildlands response to USACE comments 5 and 6 below. Credit ratios were reduced as described in the below comments and corresponding revised plans and mitigation plan. As highlighted, the proposed grading was minimized as much as feasible to ensure adequate sediment transport processes for the proposed streams. Proposed monitoring gage locations were updated in accordance with comment #19.

6. Page 35, Section 8.7.1 – The proposed work on Banner Creek Reach 1 appears more associated with an Enhancement 1 approach, additional justification is needed to support Restoration credit. DWR is concerned about tree mortality if a restoration scale approach is implemented.

Wildlands Response:

The proposed design for Banner Creek Reach 1 modifies stream pattern, profile, and dimension. The proposed alignment corrects multiple existing stream issues including actively eroding and mass wasting banks. Additionally, a relic crossing will be removed along Reach 1 and aquatic organism passage will be improved at the existing driveway crossing, and at the upstream extents of the reach. During the post contract IRT site walk, it was determined that Wildlands would evaluate the elevations, project constraints, and existing stream condition and submit the appropriate approach (See Appendix 13 – IRT Meeting Minutes, #10). Given all the existing data Wildlands proposed a stream restoration approach at a 1:1 credit ratio and believes this is the correct approach for this portion of the project.

While some tree mortality along this reach is a possible, implementing an Enhancement 1 approach would not alleviate risks of tree mortality as the water table elevation would still be expected to increase based on the alteration of the stream profile and dimension. Most of the trees along the right bank are river birches (*Betula nigra*), which can adapt to moist soils and should not struggle with increases in water tables. Wildlands will take precautions during construction to decrease tree mortality. Erosion and Sediment Control and construction sequencing instructions to the contractor will require as much work as possible to occur from the left bank only, to avoid equipment tracking through where a majority of the larger trees are located (along the existing right bank).

7. Page 34, Section 8.7.1 – Since establishment of vegetative cover and vigor can be a challenge on Priority II restoration banks/benches, please include a discussion on how the soil restoration will be addressed during construction and reference potential adaptive management.

Wildlands Response:

Section 8.8 – Vegetation and Planting Plan of the plan states:

"Mechanical site preparation will be implemented where necessary to create soil physical properties favorable for tree growth. In the agricultural field, the planted area will be ripped in a grid-like pattern with a maximum rip shank spacing of six feet. Ripping will be performed during the driest conditions feasible to maximize shatter of the plow pan. Construction practices are intended to minimize effects to soil properties, but some impacts are unavoidable. Ripping may be implemented to reduce soil compaction resulting from haul roads, stockpile areas, etc. Where grading is required, topsoil will be stockpiled and reapplied. Soil amendments may be incorporated to augment survival and growth of planted vegetation as determined necessary by soil testing."

Wildlands will strip and stockpile topsoil before grading and reapply the material after finished grading but prior to roughening to help establish vegetation in priority II and wetland grading areas. Topsoil and subsoils within proposed grading areas will be tested for typical soil parameters and amendments will be considered based upon the results. If vegetative cover struggles to establish in planted areas of the project. Wildlands will resample the affected area and implement soil amendments based on the results of a soil test during the monitoring period.

It is important to note the Site receives backwater from the French Broad River frequently inundating the areas proposed for grading. Frequent inundation events and prolonged excessive saturation will lead to slow growing or stunted vegetative growth. The following text was added to Section 9.2 in reference to the vegetation performance standards "Given the inundation periods anticipated for areas proposed for wetland restoration, woody vegetation growth may be hindered, resulting in stunted heights in early monitoring years. Wildlands will evaluate vigor and height of vegetation plots in wetland restoration areas on a case-by-case basis and will discuss any potential issues within annual monitoring reports."

8. Page 36, Section 8.7.2 – DWR would like to see trees removed during construction, which are not used for in-stream structures or habitat, be scattered as LWD within wetland restoration areas. Also, wetland areas should be disked to reduce compaction and DWR would prefer furrows not exceed a depth of 6 inches.

Wildlands Response:

Wildlands will use excess wood left over after in-stream structures are constructed at the Site as habitat by scattering and incorporating it into the floodplain.

Section 8.8 and 8.7.2 of the plan reference disking and roughening as part of the proposed wetland restoration. Text within Section 8.7.2 was updated to read: "Furrows shall not exceed 6" in depth."

- 9. *Page 36, Section 8.8*
 - Please identify the target community types.

Wildlands Response:

The target community types are now referced in the mitigation plan in Sections 8.7.1 and 8.8.

 Please indicate if fescue will be treated prior to or during site construction. DWR recommends early treatment based on observations of fescue impeding planted vegetation and vigor.

Wildlands Response:

Wildlands will use a combination of mechanical and chemical applications to remove fescue prior to and during Site construction. The Site has minimal fescue within the project area. Most fescues are found on Banner Creek reaches 1 & 2. Treatments on invasive species populations, including fescue, were conducted in 2019 and 2020 prior to construction. Mechanical removal of remaining fescue populations will take place during construction if necessary.

• Please reference the planting window specified in the 2016 NCIRT Mitigation Update Guidance.

Wildlands Response:

The planting window of November 15 to March 15 is now referenced in the mitigation plan in Section 8.8.

10. Page 37, Section 8.9 – Please confirm whether any maintained pedestrian trails for future hunting activities are proposed within the mitigation site. If so, approximate locations of trails should be shown on the site figure or design drawings. DWR does not support any new vehicle access paths/roads, including for ATV use, within the site.

Wildlands Response:

The property owners have not discussed any intention to install maintained pedestrian trails within the conservation easement.

11. Page 37, Section 8.10 – Table 17 is a helpful summary of easement break information, could you possibly add whether the breaks include culvert crossings and if the culverts will remain or be replaced. Also, based on the number of Duke Energy utility easement breaks and the proposed work to be completed within their easements (e.g. channel filling, culvert removal), please provide a brief summary of the coordination and authorization process.

Wildlands Response:

Table 17 was updated to include the presence of existing culverts and whether culverts will remain or be replaced during construction.

Duke Energy's easements grants them the right to construct, maintain and operate on the project parcels. The property is still owned by the associated property owners, and as such, no notification is required for the property owner to alter grades within easements. During construction NC811 will be utilized to mark underground utilities within the limits of disturbance.

12. Page 39, Section 9.4 – DWR appreciates that gauge ground surface elevation and soil profile data will be recorded and included in the MYO Report.

Wildlands Response:

Wildlands will ensure this data in included in the MYO report.

13. Page 40, Section 10.0 – DWR requests the inclusion of red-line drawings in the baseline monitoring report comparing record drawings to final mitigation plan design sheets.

Wildlands Response:

Typically, red-line drawings are included in the DMS As-Built Baseline Monitoring Report Template and Wildlands plans to submit red-line drawings at that time. As mentioned in Section 10.0 of the mitigation plan: "Using the DMS As-Built Baseline Monitoring Report Template (June 2017), a baseline monitoring document and as-built record drawings of the project will be developed upon completion of the planting and monitoring installation on the restored Site." 14. Page 41, Table 18 – Please remove the phrase "based on the soil type". The proposed 12% hydroperiod applies to all wetland restoration areas as stated in Section 9.4.

Wildlands Response:

"Based on soil type" was removed from Table 18.

15. Page 42, Section 10.1 – Please also include visual monitoring photo locations at proposed crossings.

Wildlands Response:

Additional monitoring photo point locations have been added to proposed crossings. Figure 11 Monitoring Component Map and Table 19 have been updated.

16. Page 43, Section 11.0 -

a. Please specific an expected maximum duration between "periodic" inspections.

Wildlands Response:

Text within Section 11 was edited to read:

"The Site will be transferred to the North Carolina Department of Environmental Quality (NCDEQ) Stewardship Program. This party shall serve as conservation easement holder and longterm steward for the property and will conduct annual inspection of the Site to ensure that restrictions required in the conservation easement are upheld."

b. Adequate signage should be installed along CE boundaries abutting utility corridors and road right-of-ways that are regularly maintained. Of particular concern are the two cut outs for individual utility poles along Banner Farm Road.

Wildlands Response:

Wildlands will mark the conservation easement in accordance with the Survey and Boundary Marking Requirements specified within the Survey Requirements for Full Delivery Projects with Boundary Design and Fencing Guidelines provide by NCDMS in January of 2020.

17. Page 44, Section 12.0 – Please include the IRT/DWR in adaptive management planning coordination.

Wildlands Response:

Major adaptive management activities will be presented to the IRT, DWR, and NCDMS. Routine maintenance including but not limited to minor invasive removal and easement marking, may be performed by Wildlands without notification of the IRT, DWR, or NCDMS.

18. Page 44, Section 13.0 – DWR would support a 2:1 ratio for wetland rehabilitation areas as being more representative of the functional uplift delta based on existing wetland hydrology, soils and vegetation.

Wildlands Response:

Wetland Rehabilitation mitigation ratios were reduced to 2:1 sitewide. Further discussion regarding wetland crediting is included in USACE comments 5 and 6 below.

19. Figure 10 – DWR requests one additional gauge and five groundwater gauge relocations – see figure markup (attached).

Wildlands Response:

Wildlands updated Figure 11 with the groundwater gages per the supplied Figure 11 provided with the comments. Please see updated Figure 11 Monitoring components map. During as-built monitoring device installation, Wildlands will use best professional judgment to ensure the groundwater gage locations sufficiently define the boundary and are representative of the proposed wetland restoration areas.

20. Appendix 7 – Please include the coordinates for the Sierra Nevada well location.

Wildlands Response:

A latitude and longitude were added to the Sierra Nevada Reference Well information sheet included within Appendix 7.

21. Appendix 8 -

a. Sheet 0.3 – For clarity, can you please reference the "CR, JR, CH, RR" used within the proposed bankfull icon on the plan views.

Wildlands Response:

An explanation for the riffle labels was placed with the Constructed Riffle symbol on Sheet 0.3

b. Sheet 0.3 – It would help our review to see the existing channel areas proposed to be filled as a shaded feature on the plan view sheets.

Wildlands Response:

Area to be filled were shaded on the project overview (Sheet 0.2). Note that shaded areas indicate ditches or existing channels that will be filled to the existing top of bank for those entities. Other areas of ditches or existing channels that show proposed grading (proposed topography contours) will also likely be filled, however they may not be filled all the way to the top of bank. Areas with proposed topography contours should be interpreted independently based on the contours.

c. Sheet 2.1.4 – There appears to be an existing stormwater pipe that discharges within the proposed easement. Please confirm that this structure will be removed.

Wildlands Response:

The existing stormwater pipe shown on Sheet 2.1.4 will be removed from the proposed conservation easement. A note was added to the sheet that reads "Excavate and remove stormwater pipes from easement"

d. Sheet 2.2.1 – Please explain the design rationale for starting UT1 west of the existing channel rather that to the east. The original concept plan shows the UT1 relocated east of the existing channel where there appears to be area to achieve moderate sinuosity between stream crossing constraints. DWR is concerned about the current design's high sinuosity with regard to long-term stability and adequate sediment transport.

Wildlands Response:

During the concept phase, preliminary data showed the upstream portion of UT1 prior to it turning and flowing south/southeast as entirely on the proposed project parcel. However, once an official boundary survey was completed, it was determined that the upstream portion of UT1 is partially on the adjacent property owner's parcel. As such, it would require permission from the adjacent property owner to allow Wildlands to relocate the stream as part of the project. The property owner was contacted and did not have interest in providing Wildlands the required permissions to move the stream. Therefore, it was required to keep the stream along the existing parcel line until UT1 turns and fully enters the project parcel. The upstream portion of UT1 which had to remain in place due to the property issue, has a steeper valley slope and would have been designed with a lower sinuosity, however, as UT1 turns south/southeast and enters the project parcel, the valley flattens and broadens. To match the valley type, UT1 was designed as a Rosgen E-type stream. Reference reaches for E-type streams have sinuosity values between 1.2 and 1.6. The current design has a sinuosity of about 1.35. Bankfull slopes are 0.1% outside of transition areas along the stream. Reference data confirms that low stream and valley slopes are synonymous with highly sinuous stream systems. With such a low channel and valley slope, adequate sediment transport capacity within the channel was identified during design as

a concern. To address this concern, the width to depth ratio of the designed channel was lowered to 10.0 to increase base flow stream power and stream power during bankfull events. Additionally, pool slopes were flattened, and riffles were steepened where possible to increase stream power and improve stream capacity. Wildlands believes the surrounding row crop agricultural fields provide a portion of the sediment load to the stream (rather than from streambank erosion or livestock impacts) and is optimistic that planting and stabilizing this source of sediment should reduce the sediment load in the stream in addition to the measures discussed above.

e. Sheet 4.1 – American beech is listed twice under the open area buffer planting.

Wildlands Response:

Sheet 4.1 was corrected, and American beech is now only listed once on the planting plan.

ii. Please confirm that the appropriate stratum is listed for the buffer zone species.

Wildlands Response:

Stratum information was confirmed and updated as necessary on Sheet 4.1.

iii. DWR appreciates the diversity of species and stratum incorporated into the buffer and riparian zone planting lists. However, the wetland planting zone accounts for approx. 80% of the site's planting area and only has 6 species proposed, of which 3 species comprise 75% of the total stems. Since red maple is already present at the site, it should be removed from the planting list. DWR requests that the wetland planting list be revisited to enhance species and stratum diversity, with no single species comprising more than 20%.

Wildlands Response:

Wildlands updated the planting plan to include more diversity. Species selected were based on target community types of Montane Alluvial Forest Large River Subtype and Bottomland Hardwood Forest as well as on previous experience with wetland restoration plantings, and discussion with plant sourcing subcontractors.

f. Sheet 6.2 – DWR recommends footer logs be incorporated in all log sills.

Wildlands Response:

Wildlands has revised the detail to require footer logs.

g. Sheet 6.3 – Please rename Lunker Log or Cover Log for consistency with legend icon.

Wildlands Response:

Sheet 6.3 (Details) was updated to "Cover Log," consistent with Sheet 0.3 (Notes and Symbols).

h. Sheet 6.4 – Where is channel stabilization (fully lined with erosion control matting) proposed?

Wildlands Response:

Exact locations for this measure are not shown on the plans at the 60% submittal. However, Wildlands prefers to have this detail in the plans so that the contractor can reference it when they are instructed to apply it during construction. Additional notes were added to Detail 4 on Sheet 6.3 to clarify the intent of the detail.

22. Appendix 9 – DWR appreciates the removal technique details included. The kudzu and bamboo onsite are particularly concerning. Please identify which species were treated and where in the annual monitoring reports.

Wildlands Response:

Invasive plant species abundance and location will be identified in annual monitoring reports.

23. Appendix 10 – DWR appreciated the site-specific maintenance plan, including mention of visits after major flooding events.

Wildlands Response:

Wildlands appreciates the acknowledgement of this effort.

NCWRC Comments, Andrea Leslie:

1. There will not be a trout moratorium required for this project.

Wildlands Response:

Wildlands acknowledges that no trout moratorium is required for this project.

2. The reestablishment and rehabilitation of nearly 40 acres of wetland in the French Broad floodplain is very exciting. Many of the French Broad floodplain wetlands have been lost, and this project has the opportunity to provide an important ecological role for the area, especially in terms of habitat.

Wildlands Response:

It is exciting to Wildlands to have the opportunity to restore a major agricultural area in the floodplain of the French Broad River to a natural floodplain wetland system which will be protected from future development.

3. Please provide a single map that shows the planting plan for the entire site, noting where the different zones of plantings will occur (e.g., wetland, open area buffer planting, partially vegetated area buffer planting, riparian planting).

Wildlands Response:

An overview of the planting plan for the entire site (Planting Zone Exhibit) is included with these comment responses.

4. We appreciate the planting plan for the open area buffer, partially vegetated area buffer, and riparian planting zones. Good attention has been given to canopy, shrub/subcanopy, and herbaceous strata. We recommend removing silver maple from the planting list, as it can be invasive. It is known from wetlands in Henderson County, but it will likely come in on its own.

Wildlands Response:

Silver maple has been removed from the proposed planted species; however, it has been included on the list of alternate species. Wildlands wants to be able to include this species during monitoring if volunteers are found to be establishing within the conservation easement.

5. However, the wetland planting plan only consists of 6 tree species, with no other strata (including herbaceous) addressed. As the wetland acreage of this site is significant, we ask the designer to round out their wetland planting plan with other strata and with a more diverse tree list. Were the Sierra Nevada wetland and Henry Fork wetland used as plant reference sites? If so, the Henry Fork site may not be the best reference for vegetation, given it is a piedmont site. Given its setting, we recommend gearing this to the Montane Alluvial Forest Large River Subtype in the Guide to the Natural Communities of North Carolina. NCWRC is open to working with Wildlands on the planting plan.

Wildlands Response:

Reference wetland plant communities were part of the information used to generate the planting plan, but Site goals and previous restoration experience were also considered while developing the planting plan for the Site. Wildlands updated the planting plan to better fit the goal of establishing the suggested community type of Montane Alluvial Forest Large River Subtype as well as a Bottomland Hardwood Forest based on the existing wetland types within the wetland restoration areas. The updated planting list is shown on Sheet 4.1 in the plans.

6. We consulted with the NC Natural Heritage program and offer the following recommendations on the planting plan:

a. Trees: Eliminate Willow Oak, as it is not a Blue Ridge species. We recommend eliminating Red Maple as well, as it will come in on its own. Here is a list of tree species that would be worthy additions – Box Elder, Black Willow, River Birch, Tulip Poplar, Shingle Oak, Black Gum, Pitch Pine (on hummocks, higher ground). We recommend bringing in at least 4 of these species into your planting plan.

Wildlands Response:

Wildlands updated the wetland species list shown on Sheet 4.1 of the plans based on the recommendations above. Species were chosen based on the recommendations above, previous wetland restoration experience, and discussions with planting subcontractors regarding species availability. Wildlands does not intend to plant red maple but lists red maple on the species list to allow it to be counted towards success as a volunteer. Per the 2016 NCIRT Updated Mitigation Guidance: "For a tree stem to count towards success for standard 1 or 2 it may be either planted or volunteer, but it must be a species from the approved planting list included in the Mitigation Plan. Other species not included on the planting list may be considered by the IRT on a case-by-case basis."

b. Shrubs/understory trees: Develop a list of shrubs/smaller trees, considering Sweetspire, Viburnum rufidulum, Viburnum prunifolium, Viburnum nudum, Leucothoe racimosa, Leucothoe fontanesiana, Spice Bush, Buttonbush, Sweet Birch, Ironwood, American Holly, River Birch.

Wildlands Response:

Wildlands updated the wetland species list shown on Sheet 4.1 of the plans based on the recommendations above.

c. Herbaceous species: We assume that the designer already has a set of species for the wetland herbaceous layer that didn't make it into the plan. Worth adding to this list would be Cinna arundinacea, Glyceria striata, Glyceria septentrionalis, Virginia Wildrye, River Oats.

Wildlands Response:

Wildlands updated the wetland species list shown on Sheet 4.1 of the plans based on the recommendations above.

7. We encourage Wildlands to incorporate rivercane into their project. Rivercane is found on the French Broad River floodplain; it has been eliminated from much of its former extent in western NC, and there is a renewed effort to reestablish this species.

Wildlands Response:

Wildlands incorporated rivercane into the planting plan and believes it is a great way to establish grade control near the confluence of The French Broad River. However, rivercane can expand rapidly through asexual reproduction from its rhizomatous root systems. It is common and natural for rivercane to establish and become a monoculture typically called canebrakes in disturbance areas. The French Broad River inundates the Site regularly causing a frequent enough moderate disturbance. Wildlands wants WRC and the IRT to understand that areas surrounding the plantings of rivercane could become monocultures of the species. Wildlands will control the species if it does become a nuisance on site. Please see updated planting plan on Sheets 4.1 - 4.5 for rivercane planting location.

USACE Comments, Kim Browning:

1. Please add some discussion regarding the outlet at STA 37+97 to the French Broad River since this area is prone to backwater flooding.

Wildlands Response:

The outlet of Banner Creek to the French Broad River experiences backwater conditions on a somewhat frequent basis. Backwater conditions were documented during several large flow events during the winter and spring of 2018-2019. Wildlands main concern during these events is sand or silt material from the French Broad River depositing along the outlet of Banner Creek and blocking or altering the proposed flow path. The current outlet does exhibit evidence of large depositions of sand/silt material on banks, benches, and to a lesser degree in the main channel of Banner Creek. However, since the Fall of 2018, no blockages of Banner Creek were documented nor has the orientation of Banner Creek changed substantially. Banner Creek was found to begin flowing normally very shortly after French Broad River water levels receded. Wildlands took the relative stability of the existing outlet into account during the design process. The proposed design ties to the outlet at nearly the same elevation as the existing and is oriented to the French Broad River (outlet pointing slightly downstream) in a similar manner to the existing outlet. The outlet was designed so the proposed orientation would not increase the risk for deposition and aggradation in this area but instead would keep the risk nearly the same as the existing stream. Wildlands designed the outlet of Banner Creek to remain relatively stable, however some small shifts in location or elevation should not be unexpected as these are natural processes which can be observed in stable small stream systems that tie down to larger drainages.

Another concern related to potential backwater conditions is the possibility of slowed vegetation growth in these areas. Wildlands planting plan has taken this into account by planting herbaceous riparian species very close to the channel, river cane at slightly higher elevations, and finally the typical bare root planting above that. While Wildlands recognizes the backwater conditions as a potential risk to the project, backwater areas of the French Broad River are also considered critical for certain life stages of fish and amphibians of the waterway and is vanishing as habitat in the region.

2. Figure 6 shows existing groundwater gages, while Figure 11 shows gages in different locations. Will the existing gages still be monitored, or just moved during construction? It would be beneficial to have gages in approximately the same areas to compare pre and post construction data and justify functional uplift.

Wildlands Response:

Groundwater gages will be removed before construction so that they are not damaged during grading. Where feasible, groundwater gages will be re-installed in approximately the same locations as the existing gages.

3. Please remove red and silver maple from the planting plan.

Wildlands Response:

See responses to NCWRC comment 4 and comment 6A.

4. Table 5: It would be beneficial to show the current NCSAM rating in this table.

Wildlands Response:

Wildlands added NCWAM ratings to the wetland summary information located in Table 5.

5. Rehabilitation areas indicate that hydrology is already above 12% and are currently jurisdictional and providing wetland functions. This would be more appropriate for an enhancement ratio of 2:1 based on functional uplift.

Wildlands Response:

Wildlands maintained the 'wetland rehabilitation' approach but reduced crediting ratios within wetland rehabilitation areas to 2:1.

6. Page 33: There is concern with proposed wetland restoration areas where more than 12" of soil will be excavated. The text cites that 12% of reestablishment and 18% of rehab wetlands will be graded deeper than 12", which is a considerable amount. Typically, these areas would be more appropriate for a wetland creation credit ratio of 3:1; however, after receiving clarification from WEI, I feel more comfortable that the grading is to support the slope requirements for the stream restoration. Attached is additional information received from WEI to justify that the grading is not for wetland hydrology needs.

Wildlands Response:

Given the concerns expressed by the USACE above and DWR in comment #5 regarding the wetland cut depths and associated ratios. Wildlands altered the crediting ratios and approaches as follows: Credit ratios for proposed wetland re-establishment areas with limited cut and/or evidence of heavily manipulated ground surfaces (field crowns, side cast ditches, etc.) remained at 1:1, credit ratios for all wetland rehabilitation areas were reduced from 1.5:1 to 2:1, and the downstream portion of the proposed wetland restoration where cut is over 12-inches was changed to wetland creation and the proposed credit ratio was reduced to 3:1. These changes were made throughout the plans as well as throughout the mitigation plan, including the Asset Table (Table 21).

7. Given the flat slope and the huge sediment load coming into the system from The French Broad River, there is concern that without sufficient flow, the stream channels may fill in with sediment and become more wetland-like.

a. Section 9.1.1: Recommend adding a performance standard to maintain channel characteristics and an OHWM. Backwater flooding of the French Broad River will likely cause aggradation, and clearing sediment and vegetation from the channel after monitoring year two is not recommended.

Wildlands Response:

The following text was added to section 9.1.1 to address channel aggradation and maintenance: "In channels where some aggradation is expected, cross-sections should show maintenance of single channel characteristics and an ordinary high water mark. No maintenance of channel dimension, including the removal of sediment, will be performed after monitoring year two without coordination and/or discussion with the NCIRT."

8. Figure 6 shows Wetland T, but Figure 10 shows this area as a small tributary. Table 9 indicates that this area will have a temporary impact of 0.04 ac from floodplain grading. Please clarify what is happening in this area when submitting the PCN.

Wildlands Response:

Wildlands will clarify impacts to wetland T when submitting the PCN. All indices of wetland T as a small tributary have been removed from all mitigation maps and plans.

a. Additionally, please estimate the number or acres of trees to be cleared to address the NLEB 4(d) rule.

Wildlands Response:

The estimated acres of trees to be cleared will be included in the endangered species section of the PCN. This area is minimal, given the lack of established native vegetation.

b. When submitting the PCN, please combine all impacts by reach. For example, if there are three 60' culverts on reach 1, list it as 180' of permanent impact rather than listing it as three separate impacts. But permanent and temporary impacts still need to be separated.

Wildlands Response:

Wildlands will document impacts as requested above.

9. Reach 1, as presented, seems to be more appropriate as an enhancement level 1 reach at 1.5:1. Please provide additional justification why this reach is proposed as restoration at 1:1.

Wildlands Response:

See Wildlands response to DWR Comment #6 above regarding the proposed credit ratio and approach along Banner Creek Reach 1.

10. Section 8.7.2: It would be beneficial to add some coarse woody debris to the depressional areas in the buffers and throughout the adjacent wetlands for habitat, and to help store sediment, increase water storage/infiltration, and absorb water energy during overbank events. I was pleased to see the inclusion of wood in the stream design for habitat.

Wildlands Response:

See Wildlands response DWR Comment #8

11. Section 8.8: In addition to the planting plan in the design sheets, it would be helpful to see a map view of the different planting zones.

Wildlands Response:

See Wildlands response to NCWRC Comment #3.

12. Section 8.9: It would be beneficial to add a discussion regarding utility line maintenance and potential for the road culverts to be replaced in the future.

Wildlands Response:

These areas are outside the boundaries of the recorded conservation easement and associated mitigation Site. Wildlands has no control over utility maintenance and/or future NCDOT projects. As such, Wildlands did not include information about these items within the mitigation plan. No project assets are being generated within these areas.

13. What is the situation with Banner Creek Reach 2, above Banner Farm Road, where no channel work is proposed?

Wildlands Response:

This portion of stream is not on the project property. A property line runs down the middle of the stream in this area and Wildlands was not able to obtain permission from the left bank property owner to complete work or establish conservation easements on this section of stream.

14. There is a section of Banner Creek Reach 3 that runs under the powerline. Please clarify that this is a non-credited section.

Wildlands Response:

As shown in the plans on Sheet 2.1.4, Banner Creek Reach 3 begins at Station 18+00 and an easement break also begins at Station 18+00. Sheet 2.1.5 shows the end of the easement break at Station 21+16 and this is the station where the credited length of Reach 3 begins. The end of Reach 3 is located on Sheet 2.1.6 at Station 25+83. The total length of Reach 3 is 783 ft; however, the credited length is 467 ft as shown in Table 21 (Asset Table) of the Mitigation Plan.

15. Recommend adding a performance standard for invasive species to be less than 5% of the conservation easement, and a zero tolerance for kudzu and bamboo.

Wildlands Response:

It is stated in Appendix 9 – Invasive Species Plan "If, during the monitoring period, invasive species threaten the survivability of planted woody vegetation in an area that exceeds 1% of the planted easement acreage, the invasive species shall be treated." Any observed areas (of any size) of kudzu and bamboo will be aggressively treated to prevent those species from becoming established on the Site.

16. Table 18: The IRT prefers the use of pressure transducers over crest gages.

Wildlands Response:

Automated pressure transducers will be installed to document bankfull events. Wildlands refers to these devices as "crest gages (CG)." The report text has been updated for clarity.

USEPA Comments, Todd Bowers:

- 1. Section 6.0/Page 29 Regulatory Considerations:
 - Recommend citing the Public Notice issued under Section 404 (SAW-2018- 01153) on August 28, 2018.

Wildlands Response:

The issued public notice was added to Table 8 in Section 6.0.

- 2. Section 8.7/Page 35 Project Implementation:
 - Sponsor may want to state actual buffer widths along Banner Creek. According to the plans/drawings the buffer appears to be 50' in width along the entire Banner Creek Reach 1. I wish to commend Wildlands for providing minimum buffer widths of 50 feet or more throughout the project.

Wildlands Response:

Note that the required buffer width for this project is 30 feet.

- 3. Section 8.8/Page 50 Vegetation and Planting Plan (see Sheet 4.1 also)
 - Sponsor needs to justify the choice of Quercus falcata var pagodifolia for this site. That tree species is chiefly found in the coastal plain and is not known in NC mountain counties such as Henderson. (source: Radford et. al. Manual of Vascular Flora of the Carolinas 1964).

Wildlands Response:

Quercus falcata var. pagodifolia was removed from the planting list.

• Recommend removing Alnus serrulata listed as an Alternate and replaced with a more suitable canopy reaching species.

Wildlands Response:

Alnus serrulata was kept on the planting list and placed in the proper stratum category subcanopy/shrub.

- 4. Section 8.9/Page 51 Project Risk and Uncertainties
- Has the sponsor considered expanding the project further south of the UT2 wetland area to capture more of the agriculture area and include it within the CE? It sounds like the landowners would be fine with abandoning the field if they could still hunt on it. Are there cost considerations and a lack of wetland credits needed?

Wildlands Response:

Wildlands investigated the option of expanding the project South of UT2; however, the results of a licensed soil scientist analysis determined wetland potential did not exist between the French Broad River and UT2 based on the presence of a natural levy created by the drainage effects of the French Broad River.

- 5. Section 9.2/Page 53 Vegetation.
- Plot number (24 fixed and 12 mobile) and size (0.024 ac or 100m2) should be included here. (per Table 19)

Wildlands Response:

Section 9.2 was updated with the vegetation plot quantities and size.

6. Table 18/Page 55: Monitoring Plan

• *Recommend adding stem heights for MY 5 and MY 7 in vegetation.*

Wildlands Response:

The stem heights performance standard was added to Table 18.

Hard copies of the Final Mitigation Plan package can be provided upon request. Please contact me at (865) 207-8835 if you have any questions.

Sincerely,

Ja Kilon

Eric Neuhaus, PE Project Manager eneuhaus@wildlandseng.com

ROY COOPER Governor MICHAEL S. REGAN Secretary TIM BAUMGARTNER Director

March 10, 2020

Mr. Eric Neuhaus, PE Wildlands Engineering, Inc. 167-B Haywood Road Asheville, N.C. 28806

Subject: Draft Mitigation Plan for the Banner Farm Mitigation Site French Broad River Basin – CU# 06010105 Henderson County DMS Project ID No. 100062 Contract # 7530

Dear Mr. Neuhaus:

On February 10, 2020, the Division of Mitigation Services (DMS) received the draft mitigation plan for the Banner Farm Mitigation Site from Wildlands Engineering, Inc. (WEI).

The report establishes the proposed mitigation activities on the project site. Anticipated mitigation on the site includes 6,294 Linear Feet (LF) of Stream Restoration; 32.960 acres of Wetland Re-Establishment and 2.760 acres of Wetland Rehabilitation for a total of 6,294 Stream Mitigation Units (SMUs) and 34.800 Wetland Mitigation Units (WMUs). The following are our comments on the draft mitigation plan report and preliminary plan set:

Title Page: Please update RFP# to 16-007334.

Page 3, Table 3: Evard soils does not appear on Figure 5. This series may be outside of the area of interest. Please verify and update.

Page 4, Table 4: UT1 and UT2 appear to be ditches rather than modified streams (as seen in the Lidar generated DEMs) as they enter the project boundary. Is there a federal or state jurisdictional call for these streams within the project boundary? If these features are streams, please provide evidence.

Given UT1 and UT2 may be ditches (within the project boundary), what evidence or experience does WEI have to suggest the proposed alignment of these streams (constructed through the wetland) will remain streams?

3.5.2 Hydric Soils: Second paragraph in section indicates that wetland restoration, rehabilitation and re-establishment are proposed for the project; however, there is only rehabilitation and re-establishment proposed on Table 21. Please revise as necessary.

5.2.3 Channel Geomorphology: Have these features been ditched and then maintained, or have they incised based on a different activity?

8.2.1 UT to South Mills River: UT to South Mills River was used as a reference for discharge. The description indicates that it is impounded by a small pond upstream in the watershed. Is WEI confidant using an impounded stream as a reference reach?

8.4.2 Regional Flood Frequency Analysis: Last paragraph in section indicates that the Wildlands regional flood frequency analysis 1.2-year predictions are plotted on Figure 9. This analysis is not currently plotted on Figure 9. Please update.

Page 30, Table 15: The table indicates bankfull flows will be moving most particle sizes on all reaches. Is this the intention of design or are the ranges due to the low and high estimates from two different methods? Please be a bit more specific regarding sediment competence estimates and explanation.

8.6.2 Hydric Soils within Wetland Restoration Areas: Last sentence indicates preliminary and detailed LSS reports are in Appendix 3. These reports are located in Appendix 7. Please update.

8.6.4 Hydrologic Modeling, Page33: Plan indicates that there are areas requiring more than 12" of grading. The wetland cross sections show that these areas are limited to berms and a few areas adjacent to streams. Areas requiring 12" of grading are typically considered creation and credited at a different ratio. Can WEI quantify the total area requiring more than 12" of grading and add additional discussion in plan for clarification.

Table 16a: The modeled results for UT2 during normal precipitation year indicate no month(s) during the growing season when average water level would be within 12" of the soil surface; while the dry year model results indicated a single month. Please verify the results in the report are correct. If this is the case, does this raise a concern for meeting the 12% hydro period specified in the performance standards? If the results are correct and the assumption is that due to on-site soils differing from mapped soils, specifically on-site determinations resulting in soils indicative of groundwater interaction as opposed to fluvial dominance it may be helpful to state this since the model did not address changes in groundwater interactions on site.

13.0 Determination of Credits: Rehabilitation wetlands have a ratio of 1.5:1 in Table 21. In the Post Contract Meeting Minutes, the IRT commented that 2:1 may be more applicable to the rehabilitation areas (Note #9). Please justify the change in crediting ratio for rehabilitation.

Section 1.0/Figure 1 Vicinity Map: Horse Shoe is not shown on Figure 1 as discussed in Section 1.0. Please update.

Appendix 6: Please label cross sections correctly as pavement-subpavement or pavement only.

Plansheets:

Sheet 0.2 Project Overview: Please include north arrow and scale.

UT1 and UT2: Please explain the need for meander bend revetments in the downstream reaches of UT1 and UT2 when the design gradient is 0.002? Does WEI expect instability on these streams?

Sheet 4.1 Planting List: Wetland Area Planting: Green ash is specified at a density of 15%, but it should be limited to a maximum of 5% due to emerald ash borer concerns.

General QA/QC

5.2.5 Biology: Second paragraph spelling error "continues" is likely "continuous".

Page 17, Table 9: Wetland K and Wetland L acreage amounts contains two decimals (ex: 0..16).

7.0 Mitigation Site Goals and Objectives: Remove "and" from last sentence.

Page 31, last paragraph: Remove "in" from "included in for both".

Page 32, fifth paragraph in section 8.6.4: Remove period between "channels. within".

Page 33, last paragraph: Typo referring Table 16a as 165a.

At your earliest convenience, please provide a written response letter addressing the DMS comments provided and a revised/updated electronic copy of the draft mitigation plan. The comment response letter should be included in the revised draft mitigation plan after the report cover. If you have any questions, please contact me at any time at (828) 231-7912 or email me at matthew.reid@ncdenr.gov.

Sincerely,

Matthew Reid

Matthew Reid Project Manager – Western Region NCDEQ – Division of Mitigation Services 5 Ravenscroft Dr., Suite 102 Asheville, NC 28801 (828) 231-7912 Mobile

MEMORANDUM

TO:Matthew Reid, NC DMSFROM:Eric Neuhaus, PE

DATE: April 1, 2020

RE: Banner Farm Mitigation Site Henderson County, NC French Broad River Basin 06010105 DMS Project ID No. 100062 Response to NCDMS Mitigation Plan Comments

This memo documents NCDMS's initial Draft Mitigation Plan review comments (*in italics*) received from Matthew Reid's letter dated 03/10/2020, the project team's responses, and where the revisions have been included in the final Mitigation Plan.

Mitigation Plan Comments:

- Title Page: Please update RFP# to 16-007334
 - RFP number has been updated.
- **Page 3, Table 3:** Evard soils does not appear on Figure 5. This series may be outside of the area of interest. Please verify and update.
 - Evard Soils were located outside of the area of interest and references to it were removed from Table 3.
- **Page 4, Table 4:** UT1 and UT2 appear to be ditches rather than modified streams (as seen in the Lidar generated DEMs) as they enter the project boundary. Is there a federal or state jurisdictional call for these streams within the project boundary? If these features are streams, please provide evidence. Given UT1 and UT2 may be ditches (within the project boundary), what evidence or experience does WEI have to suggest the proposed alignment of these streams (constructed through the wetland) will remain streams?
 - UT1 and UT2 show on included historic aerial photos upstream of the project, portions of the reaches have been identified as solid blue line streams (indicating perennial flow) on the USGS 7.5-minute quadrangle map for Horse Shoe and the most current NRCS Soil survey for Henderson County. UT1 and UT2 have drainages upstream of the project area of 128 acres (0.2 square miles) and 63 acres (0.098 square miles), respectively. Additionally, Wildlands received an approved Preliminary Jurisdictional Determination included in Appendix 3 on the property which included a field walk with ACOE representative David Brown. UT1 and UT2 were identified as non-wetland waters and within the approval it was noted:
 - o "The streams on the property are UTs of the French Broad River, which all exhibit

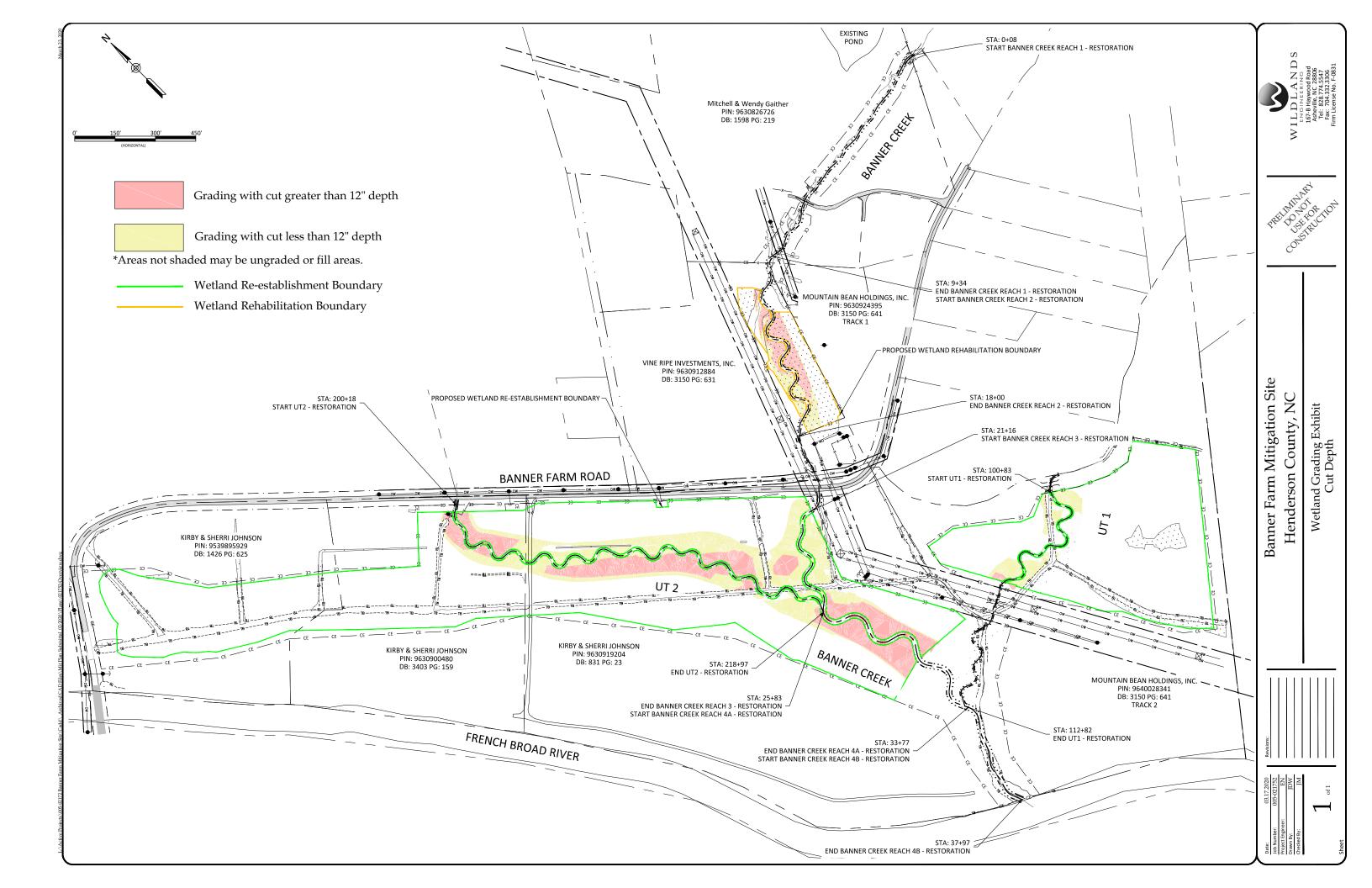
physical ordinary high water mark (OHWM) indicators including, break in slope; developed bed and bank; shelving; absence of vegetation; leaf litter wash away; sediment deposition and sorting; presence of aquatic life; water staining; presence of debris; and scour."

- In addition to the information above, Wildlands filled out NC DWQ Stream Identification Forms for all reaches, which are included in Appendix 5. UT1 and UT2 both scored as perennial stream channels with scores of 35.5 and 34.5, respectively.
- Given the information above, and the time spent on Site observing the hydrology within the streams and upstream of the project boundary, Wildlands does not believe these channels are ditches and is not concerned about them maintaining dimension due to lack of flow. As shown in the preliminary design plans included in Appendix 8, there are existing ditches within the project boundary that Wildlands plans to fill as part of the wetland restoration that do not maintain adequate flow and/or geomorphology to be stream channels. These ditches do not receive drainage upstream of the Site as UT1 and UT2 do. These portions of the project were classified as open water based on the jurisdictional determination. Section 3.6.7 – Site Ditches was added to the report to provide further clarification and outline resources used for jurisdictional determination of UT1 and UT2 at the Site.
- **3.5.2 Hydric Soils**: Second paragraph in section indicates that wetland restoration, rehabilitation and re-establishment are proposed for the project; however, there is only rehabilitation and re-establishment proposed on Table 21. Please revise as necessary.
 - Per Wilmington District ACOE Mitigation Guidance and per RFP 16-007334, wetland restoration methods include two categories: re-establishment and rehabilitation. Hence the discussion in the report regarding wetland restoration is used to refer to all areas (both re-establishment and rehabilitation). Some wetland terminology was revised for clarification, but general use of the term wetland restoration was not removed from the report.
- **5.2.3 Channel Geomorphology**: Have these features been ditched and then maintained, or have they incised based on a different activity?
 - All streams on the site, except for Banner Creek Reach 1, have likely been ditched and maintained for several years. This has likely contributed greatly to the streams current incised condition. Banner Creek Reach 1 may have been ditched at some point in its history, however, it does not appear to be actively ditched.
- **8.2.1 UT to South Mills River:** UT to South Mills River was used as a reference for discharge. The description indicates that it is impounded by a small pond upstream in the watershed. Is WEI confidant using an impounded stream as a reference reach?
 - Given that there are approximately 5 ponds upstream of Banner Creek Reach 1 within the project watershed, Wildlands believes having a reference reach that includes a small farm pond upstream provides valuable information to the project design.
- **8.4.2 Regional Flood Frequency Analysis:** Last paragraph in section indicates that the Wildlands regional flood frequency analysis 1.2-year predictions are plotted on Figure 9. This analysis is not currently plotted on Figure 9. Please update.

- Figure 9 was updated with the 1.2-year predictions from Wildlands' regional flood frequency analysis.
- **Page 30, Table 15:** The table indicates bankfull flows will be moving most particle sizes on all reaches. Is this the intention of design or are the ranges due to the low and high estimates from two different methods? Please be a bit more specific regarding sediment competence estimates Oand explanation.
 - The Competence Analysis looks at proposed stream dimensions and existing bed materials on Site. Currently, the streams receive high sand loads from the adjacent agricultural fields as well as stream bank erosion which has created very low D50 values. Our analysis shows that the streams are capable of moving these smaller particles. When specifying the rock size for proposed in-stream structures, a rock mix will be selected with a D50 that is larger than what our competence analysis suggests will move through the stream system. The end result will be a system that is primarily stable (with riffle material mostly staying in place during bankfull events) but that still has some mobile particles, as is typical in most stable, natural streams. Text was updated in Section 8.5.2 to further clarify the analysis and results.
- **8.6.2 Hydric Soils within Wetland Restoration Areas:** Last sentence indicates preliminary and detailed LSS reports are in Appendix 3. These reports are located in Appendix 7. Please update.
 - Reference was changed to indicate that the LSS reports are located in Appendix 7
- **8.6.4 Hydrologic Modeling, Page 33:** Plan indicates that there are areas requiring more than 12" of grading. The wetland cross sections show that these areas are limited to berms and a few areas adjacent to streams. Areas requiring 12" of grading are typically considered creation and credited at a different ratio. Can WEI quantify the total area requiring more than 12" of grading and add additional discussion in plan for clarification.
 - A Wetland Grading Exhibit is attached showing a graphical representation of proposed wetland areas being graded as part of the design. Graded areas are color coded to show grading depths less than 12" and greater than 12". Areas not color coded within the proposed wetland boundaries are not slated for any cut, but adjacent ditches will be filled. The total area within the proposed wetland re-establishment with greater than 12" of cut is 3.976 AC or approximately 12%. The total area within the proposed wetland rehabilitation with greater than 12" of cut is 0.489 AC or approximately 18%. Text was added to section 8.6.4 outlining the quantities of wetland restoration and rehabilitation with grading over 12 inches.
- **Table 16a:** The modeled results for UT2 during normal precipitation year indicate no month(s) during the growing season when average water level would be within 12" of the soil surface; while the dry year model results indicated a single month. Please verify the results in the report are correct. If this is the case, does this raise a concern for meeting the 12% hydro period specified in the performance standards? If the results are correct and the assumption is that due to on-site soils differing from mapped soils, specifically on-site determinations resulting in soils indicative of groundwater interaction as opposed to fluvial dominance it may be helpful to state this since the model did not address changes in groundwater interactions on site.
 - Wildlands assumes the comment is referring to Table 16b not 16a as listed. The modeled

results were verified and are correct as listed in the report. Wet, dry, and average years are identified based on annual rainfall as well as growing season rainfall. For 2012, annual rainfall is average, and growing season rainfall is average, but rainfall in January and February is lower than precipitation values in the dry year. The low early year rainfall draws groundwater tables in the model down dramatically, and the model has difficultly recovering or rewetting during the growing season. This is a limitation of the model that Wildlands is aware of and it is consistent across groundwater models used previously (DrainMOD, Wetbud, ModFlow). Based on previous experience with water budget modeling and its limitation this does not raise concern for meeting the 12% hydroperiod specified in the performance standards given the results of the other modeled years and the assumptions made within the model.

- **13.0 Determination of Credits:** Rehabilitation wetlands have a ratio of 1.5:1 in Table 21. In the Post Contract Meeting Minutes, the IRT commented that 2:1 may be more applicable to the rehabilitation areas (Note #9). Please justify the change in crediting ratio for rehabilitation.
 - Portions of the proposed wetland rehabilitation is within the managed agriculture. Additionally, the portion of wetland rehabilitation upstream of Banner Farm Road is currently being drained by an incised and channelized stream and is routinely brush hogged outside of seasonal growth left for hunting. Based on the level of effort and uplift potential including hydrologic uplift through stream restoration, Wildlands believes a crediting ratio of 1.5:1 is appropriate.
- **Section 1.0/Figure 1 Vicinity Map:** Horse Shoe is not shown on Figure 1 as discussed in Section 1.0. *Please update.*
 - Horse Shoe was added to Figure 1.
- Appendix 6: Please label cross sections correctly as pavement-subpavement or pavement only.
 - Graph titles were updated in Appendix 6 to correctly indicate the graph contents.


Plansheets:

- Sheet 0.2 Project Overview: Please include north arrow and scale.
 - North arrow and scale were added to the Overview Sheet. Other Sheets were reviewed to verify that
- **UT1 and UT2:** Please explain the need for meander bend revetments in the downstream reaches of UT1 and UT2 when the design gradient is 0.002? Does WEI expect instability on these streams?
 - Brush toe revetments were added mid-reach to both UT1 and UT2 to provide additional habitat within the stream. Brush Toe provides woody recesses and a refuge from the main current of the stream for aquatic species. Wildlands wants to encourage aquatic species from the French Broad River to navigate up the UTs during low flows and providing refuge should encourage this.
 - In addition to providing quality habitat, a majority of meander bend revetments on UT1 and UT2 were added where the stream bank in the proposed channel is passing through the old existing channel. Wildlands recognizes this as an area with some potential for instability. The brush toe revetments should provide an additional factor of safety in these specific bends.

- **Sheet 4.1 Planting List:** Wetland Area Planting: Green ash is specified at a density of 15%, but it should be limited to a maximum of 5% due to emerald ash borer concerns.
 - Planting lists were revised so that Green Ash made up no more than 5% of any of the planting species for planting type. Only the "Wetland Area Planting" species mix was revised to lower the Green Ash content to 5%.

General QA/QC:

- **5.2.5 Biology:** Second paragraph spelling error "continues" is likely "continuous".
 - "Continues" was changed to "continuous."
- Page 17, Table 9: Wetland K and Wetland L acreage amounts contains two decimals (ex: 0..16).
 - Extra decimals were removed.
- **7.0 Mitigation Site Goals and Objectives:** Remove "and" from last sentence.
 - "And" was deleted.
- Page 31, last paragraph: Remove "in" from "included in for both".
 - "In" was removed from the paragraph.
- Page 32, fifth paragraph in section 8.6.4: Remove period between "channels. within".
 - The period was removed.
- Page 33, last paragraph: Typo referring Table 16a as 165a.
 - The "5" was removed from the table reference.

TABLE OF CONTENTS

1.0	In	troduction	1
2.0	W	atershed Approach and Site Selection	1
3.0	Ba	aseline and Existing Conditions	2
	3.1	Existing Site Conditions	2
	3.2	Landscape Characteristics	2
	3.3	Land Use/Land Cover	3
	3.4	Existing Vegetation	4
	3.5	Existing Conditions - Wetlands	5
	3.6	Existing Conditions - Streams	9
4.0	W	atershed and Channel Disturbance and Response1	.3
5.0	Fu	Inctional Uplift Potential 1	.3
	5.1	Wetland Functional Uplift Potential	13
	5.2	Stream Functional Uplift Potential 1	13
6.0	Re	egulatory Considerations 1	15
	6.1	Biological and Cultural Resources	16
	6.2	FEMA Floodplain Compliance and Hydrologic Trespass	16
	6.3	401/404	16
7.0	Μ	itigation Site Goals and Objectives1	8
8.0	De	esign Approach and Mitigation Work Plan1	.9
	8.1	Design Approach Overview	۱9
	8.2	Reference Streams	20
	8.3	Design Channel Morphological Parameters2	23
	8.4	Design Discharge Analysis	26
	8.5	Sediment Transport Analysis	29
	8.6	Wetland Design	31
	8.7	Project Implementation	34
	8.8	Vegetation and Planting Plan	36
	8.9	Project Risk and Uncertainties	37
	8.10		
9.0	Pe	erformance Standards	8
	9.1	Streams	38
	9.2	Vegetation	39
	9.3	Visual Assessments	
	9.4	Wetlands	10
10.		onitoring Plan4	
		Monitoring Components	
11.		ng-Term Management Plan4	
12.		daptive Management Plan4	
13.	-	etermination of Credits4	
14.	0 Re	eferences4	15

TABLES

Table 1: Project Attribute Table Part 1	
Table 2: Project Attribute Table Part 2	2
Table 3: Project Soil Types and Descriptions	
Table 4: Drainage Areas and Associated Land Use	4
Table 5: Existing Wetland Summary	
Table 6: Existing Groundwater Monitoring Gage Data and Analysis Results	9
Table 7a: Stream Resources	12
Table 7b: Stream Resources	12
Table 8: Regulatory Considerations	
Table 9: Estimated Impacts to Wetlands and Ditches	16
Table 10: Mitigation Goals and Objectives	
Table 11: Stream Stressors and Restoration Approach	
Table 12a: Stream Reference Data Used in Development of Design Parameters for Banner Creek Reac	ches
1-3	20
Table 12b: Stream Reference Data Used in Development of Design Parameters for Banner Creek Read	ches
4a-4b	
Table 12c: Stream Reference Data Used in Development of Design Parameters for UT1	21
Table 12d: Stream Reference Data Used in Development of Design Parameters for UT2	21
Table 13a: Summary of Morphological Parameters for Banner Creek Reach 1-3	23
Table 13b: Summary of Morphological Parameters for Banner Creek Reach 4a-4b	24
Table 13c: Summary of Morphological Parameters for UT1	25
Table 13d: Summary of Morphological Parameters for UT2	25
Table 14: Summary of Design Discharge Analysis for Banner Creek design reaches	29
Table 15: Results of Competence Analysis	30
Table 16a Water Budget Components for Wetland Re-establishment along UT1	33
Table 16b Water Budget Components for Wetland Re-establishment along UT2	
Table 17: Easement Breaks and Crossings	
Table 18: Monitoring Plan	41
Table 19: Monitoring Components	
Table 20: Long-term Management Plan	
Table 21: Asset Table	44

FIGURES

- Figure 1 Vicinity Map
- Figure 2 Site Map
- Figure 3 Watershed Map
- Figure 4 USGS Topographic Map
- Figure 5 Soils Map
- Figure 6 Existing Conditions Map
- Figure 7 FEMA Floodplain Map
- Figure 8 Reference Reach Vicinity Map
- Figure 9 Discharge Analysis Graph
- Figure 10 Concept Design Map
- Figure 11 Monitoring Components Map

APPENDICES

- Appendix 1 Site Protection Instrument
- Appendix 2 Historic Aerial Photos
- Appendix 3 Jurisdictional Determination and Wetland Assessment Forms
- Appendix 4 Categorical Exclusion Documentation and Agency Correspondence
- Appendix 5 Stream Identification Forms
- Appendix 6 Data, Analysis, and Supplementary Design Info
- Appendix 7 Wetland Design Documents and Data
- Appendix 8 Preliminary Design Plans
- Appendix 9 Invasive Species Plan
- Appendix 10 Maintenance Plan
- Appendix 11 Credit Release Schedule
- Appendix 12Financial Assurance
- Appendix 13 IRT Meeting Minutes

1.0 Introduction

The Banner Farms Mitigation Site (Site) is located in Henderson County approximately 5 miles west of Hendersonville near Horse Shoe (Figure 1). The project is located within the French Broad River Basin Hydrologic Unit (HU) 06010105020010 and NC Division of Water Resources (DWR) Subbasin 04-03-02. The project limits include Banner Creek and two associated tributaries which drain to the French Broad River. The Site (Figure 2) was selected by DMS to provide stream mitigation units (SMUs) and wetland mitigation units (WMUs) in the French Broad River Catalog Unit 06010105 (French Broad 05). The project involves the restoration of approximately 6,300 existing linear feet of incised and straightened streams, the restoration of 33.2 acres of historically altered wetlands, and the creation of 1.14 acres of floodplain wetland. Restoration of project streams and wetlands will provide 6,294 SMUs and 33.58 WMUs. The Site will be protected by a 46.6 - acre conservation easement. The Site Protection Instrument detailing the conservation easement is located in Appendix 1. General project information is shown below in Table 1.

Project Information	1
Project Name	Banner Farm Mitigation Site
County	Henderson
Project Area (acres)	47
Project Coordinates (latitude and longitude)	35° 21′ 7"N 82° 33' 13"W
Planted Acreage (acres of woody stems planted)	45

Table 1: Project Attribute Table Part 1

2.0 Watershed Approach and Site Selection

The 2009 French Broad River Basin Restoration Priorities (RBRP) describes major stressors within the basin as excessive fecal coliform bacteria, nutrient enrichment, habitat fragmentation, habitat degradation, streambed scour, and streambank erosion. The RBRP also states that stressors from agriculture and transportation-related sources have impacted the biological communities within the basin, including federally threatened and endangered species. Development, urbanization, and agriculture are cited as the major contributors to non-point source pollution within the watershed.

The proposed project drains directly to the French Broad River. At its confluence with Banner Creek, the French Broad River is defined in the 2016 North Carolina Integrated Report as Class WS-IV waters. Class WS-IV (Water Supply IV- Highly Developed) waters are protected for drinking, culinary, food processing, aquatic life, secondary recreation, and fresh water purposes, and are generally in highly developed watersheds.

The French Broad River Basin is also discussed in the 2015 North Carolina Wildlife Resource Commission's (NCWRC) Wildlife Action Plan (WAP). In the report, non-point source pollution including nutrient enrichment, highway construction and its associated impacts, development, urbanization, and agriculture contribute to sources of non-point source pollution and sediments. This report notes the importance of stream restoration and land protection efforts in the watershed to address the observed stressors.

Restoration of Site stream and wetlands will directly and indirectly address key CU-wide restoration goals identified in the RBRP and the NCWRC WAP by reducing sediment and nutrient loads from agricultural lands, creating stable stream banks, restoring a forested wetland in agriculturally

maintained buffer areas, and preserving existing forested buffers. The project will slow surface runoff, increase retention times, provide shade to streams, and reconnect the streams to their historic floodplains and riparian wetlands, which will reduce sediment and nutrient loads that contribute to eutrophication of downstream waters. In addition, restoration will provide and improve aquatic terrestrial (riparian and wetland) habitats while improving stream stability and overall hydrology.

3.0 Baseline and Existing Conditions

The Site watershed (Table 2 and Figure 3) is located in a southeast HU of the French Broad 05 CU. It is situated in the rural countryside just west of Hendersonville in Henderson County. The following sections describe the existing conditions of the watershed and watershed processes, including disturbance and response.

Project Watershed Summary Information				
Physiographic Province	Blue Ridge			
Ecoregion (Level IV)	Broad Basins			
River Basin	French Broad			
USGS HUC (8 digit, 14 digit)	06010105, 06010105020010			
NCDWR Sub-basin	04-03-02			
Project Drainage Area (acres)	722			
Project Drainage Area Percentage of Impervious Area	1.5%			
CGIA Land Use Classification	44% cultivated crops and hay; 27% forest; 2.5% shrub/grassland/herbaceous; 0.5% wetlands; 26% residential			

Table 2: Project Attribute Table Part 2

3.1 Existing Site Conditions

The proposed project is located on multiple parcels totaling 140 acres which are immediately adjacent to the French Broad River and project streams drain directly to the river. A majority of the property (approximately 70%) has been used for row crop agriculture for decades. The remaining acreage is a mixture of residential and wooded. Currently, the agricultural fields are used to grow primarily field corn. These fields are extensively ditched. Perennial and intermittent streams on the Site have clearly been channelized and relocated to increase crop production. Aerial photography dating back to 1964 (Appendix 2) shows that the Site has remained in nearly the same configuration since that time.

3.2 Landscape Characteristics

3.2.1 Physiography and Topography

The Site is located in the Blue Ridge Belt of the Blue Ridge physiographic province. The Blue Ridge province is characterized as a mountainous area with steep ridges and valleys and elevations ranging from 1,500 to over 6,000 feet above sea level. The Site topography, as indicated on the Horse Shoe, NC USGS 7.5 minute topographic quadrangle, shows moderately sloped valleys generally running north to southeast throughout the Site (Figure 4). The Site topography and relief are typical of the French broad floodplain. The project streams traverse flat, low lying pastures and agricultural fields at the upstream and downstream ends of the project.

3.2.2 Geology and Soils

The Blue Ridge Belt contains a combination of igneous, sedimentary, and metamorphic rocks that have been repeatedly heated and deformed through such processes as folding, faulting, and fracturing. The

underlying geology of the Site is mapped as middle Proterozoic age (1.2 billion years in age) migmatitic biotite-hornblende gneisses (Ymg). The unit is described as layered biotite-granite gneiss, biotite-hornblende gneiss, amphibolite, and calc-silicate rock that locally contains relict granulite facies rock (NCGS, 1985). No exposed bedrock was observed on-site.

The proposed project is mapped by the Henderson County Soil Survey. The predominant project area soils as mapped by the Natural Resources Conservation Service (NRCS) are described below in Table 3. Figure 5 is a soil map of the Site.

Soil Name	Description
Bradson Gravelly loam	This is a well-drained soil with low slopes of 0-15%. The soil has medium surface runoff and moderate infiltration. The soils are typically found in broad stream terraces and fans.
Codorus loam	This is somewhat poorly drained soil with slow surface runoff and high infiltration. These soils are typically found in floodplains.
Delanco loam	This is a moderately well drained soil with slopes from 0-7%. Surface runoff is slow, and infiltration is high. The soils are typically found in depressions on stream terraces.
Hayesville loam	This is a well-drained soil with moderate slopes of 15-30%. Surface runoff is high, and infiltration is moderate. These soils are found in ridges and hillslopes.
Rosman loam	This is a well-drained soil with very slow surface runoff and moderate infiltration. Typically, these soils are found in floodplains.
Suncook loamy sand	This is a well-drained soil with very slow surface runoff and low infiltration. Typically, these soils are found in natural levees and floodplains.
Tate fine sandy loam	This is a well-drained soil with slopes of 7-15% and moderate surface runoff and high infiltration. Typically, these soils are found on fans, coves, and drainageways.
Toxaway silt Ioam	This is a very poorly drained soil with very high surface runoff and moderate infiltration. Typically, these soils are found in depressions on floodplains.

Table 3: Project Soil Types and Description	ons
---	-----

Source: Henderson County Web Soil Survey

3.3 Land Use/Land Cover

The project watershed totals 1.13 square miles and the primary land use is agricultural which comprises 44% of the area. Cultivated row crops make up the majority of the agricultural practices at 44% of the drainage area. The next largest category of land use is forested land, which covers 27% of the watershed. Wetlands make up about 0.5% of the watershed while 2.5% is covered by scrub/shrub or grassland/herbaceous land uses, 26% by residential. The impervious area within the project watershed was calculated to be 10.8 acres, or approximately 1.5% of the watershed. The watershed areas and current land uses for each of the project reaches are summarized in Table 4, below.

Aerial photos of the project site and surrounding area from 1964 to 2019 were reviewed for changes in land use and land cover. The land use and land cover patterns in this area have changed slightly over that time period. The agricultural fields on the Site parcels have been in row crop production from 1964 to present. Throughout the watershed, agricultural land uses decline from 1964 to 1994. Residential and forested areas increase throughout that time. In the past 25 years since 1994, the watershed has remained relatively stable with only minor changes in land use. In general, this area has maintained its rural, agricultural character over the last roughly 60 years. This consistency in land use within the project watershed indicates that watershed processes affecting hydrology, sediment supply, and nutrient and pollutant delivery have not varied widely over this time period. With a lack of development pressure,

watershed processes and stressors from outside the project limits are likely to remain consistent throughout the implementation, monitoring, and closeout of this project. These stressors and processes are discussed further in Section 4 below.

Reach Name	NCDWR Stream Identification Form Scores	Intermittent/ Perennial	Watershed Area (acres)	Watershed Area (sq. mi.)	Land Use
Banner Creek Reach 1	38.50	Perennial	390	0.61	42% cultivated crops; 30% forest; 27% residential; 4% shrub/herbaceous
Banner Creek Reach 2	38.50+	Perennial	422	0.66	43% Cultivated crops; 29% forest: 24% residential; 4% shrub/herbaceous
Banner Creek Reach 3	38.50+	Perennial	429	0.67	44% Cultivated crops; 29% forest: 24% residential; 3% shrub/herbaceous
Banner Creek Reach 4a	38.50+	Perennial	634	0.99	44% Cultivated crops; 29% forest: 22% residential; 5% shrub/herbaceous
Banner Creek Reach 4b	38.50+	Perennial	722	1.13	44% Cultivated crops; 27% forest: 26% residential; 3% shrub/herbaceous
UT1	35.50	Perennial	81	0.13	44% Cultivated crops; 35% forest: 19% residential; 2% shrub/herbaceous
UT2	34.50	Perennial	190	0.30	63% residential; 34% Cultivated crops; 3% forest

Table 4: Drainage Areas and Associated Land Use

3.4 Existing Vegetation

3.4.1 Banner Creek Reach 1 and Reach 2

A majority of the streamside vegetation on this reach consists of a regularly maintained lawn that abuts the streams banks. A narrow row of river birch (*Betula nigra*) and Chinese privet (*Ligustrum sinense*) exists above and below the driveway crossing. At the lower portion of Banner Creek Reach 1, the wooded buffer extends on the right bank with more variety including tulip poplar (*Liriodendron tulipifera*), eastern white pine (*Pinus strobus*), white oak (*Quercus alba*), American holly (*Ilex opaca*), hickory (*Carya*), river cane (*Arundinaria gigantea*), multiflora rose (*Rosa multiflora*), and Japanese honeysuckle (*Lonicera japonica*).

Downstream, the riparian vegetation of Reach 2 consists of row crops on the left floodplain and managed herbaceous under the powerline easement. Along the banks, a narrow row of vegetation including scattered tulip poplar, river birch, Bradford pear (*Pyrus calleryana*), blackberry (*Rubus sp.*), and Japanese honeysuckle.

3.4.2 Banner Creek Reach 3 and Reach 4a

Below the Banner Farm Road crossing, these reaches continue through row crops on the right floodplain and managed herbaceous cover on the left floodplain. A narrow row of vegetation along the straightened banks including scattered small sycamore (*Plantanus occidentalis*), silky dogwood (*Cornus amomum*), Bradford pear, blackberry, and Japanese honeysuckle.

3.4.3 Banner Creek Reach 4b

Banner Creek Reach 4b continues to flow through row crops along both floodplains. A thin buffer exists consisting of mature sycamore, tulip poplar, silky dogwood, river birch, elderberry (*Sambucus canadensis*), blackberry, river cane, and Japanese honeysuckle. Near the confluence with the French Broad River, there exist small pockets of golden bamboo (*Phyllostachys aurea*) and kudzu (*Pueraria montana*).

3.4.4 UT1

The upstream portion of UT1 flows along the property line with a thin woody buffer along the right bank consisting of tulip poplar, red oak (*Quercus rubra*), hackberry (*Celtis laevigata*), Chinese privet, multiflora rose, and Japanese honeysuckle. As UT1 makes a southern turn and flows through a culvert, the floodplain consists of row crops that abut the stream on both banks.

3.4.5 UT2

Similar to the other project streams south of Banner Farm Road, the floodplain of UT2 consist of row crops on both sides. A narrow woody buffer along both banks consists of silky willow (*Salix sericea*), river birch, sycamore, and blackberry.

3.5 Existing Conditions - Wetlands

3.5.1 Jurisdictional Wetlands

On June 2, 23, and 29, 2019, Wildlands investigated potential waters of the United States within the project area. These areas were delineated using the USACE routine On-Site Determination method presented in the 1987 Corps of Engineers delineation manual, the subsequent Regional Supplement for the Eastern Mountains and Piedmont Region, groundwater hydrology data, and the evaluator's best professional judgement. All jurisdictional Waters of the U.S. were located by sub-meter GPS. The Preliminary Jurisdictional Determination (PJD) package was submitted on August 30, 2019. The approved PJD was issued on November 19, 2019 and is attached in Appendix 3. Existing wetlands within the proposed conservation easement are summarized in Table 5.

There are 23 jurisdictional wetland features located within the proposed easement (Wetlands A-W) (Figure 6). Jurisdictional wetland features on site exhibit prolonged saturation within the upper 12 inches of the soil profile, hydrophytic vegetation, and a depleted matrix or darkened surface horizons. Common vegetation species present in wetlands include duck potato (*Sagittaria latifolia*), sycamore, red maple (*Acer Rubrum*), and jewel weed (*Impatiens capensis*).

Existing wetland areas were classified and evaluated using the North Carolina Wetland Assessment Method (NCWAM). The rapid assessment method evaluates field conditions relative to reference condition to generate function ratings for a specific wetland type. Existing wetlands were classified as headwater forests and bottomland hardwood forest and overall ratings range from low to medium. The primary impairment to existing wetlands is the presence of ditches and berms which result in reduced surface and subsurface water storage and limited hydrologic connectivity with streams. This is reflected in both the hydrology and water quality function ratings. Habitat quality varies among wetlands depending on vegetation composition and structure. NCWAM field assessment forms and rating calculator output is attached in Appendix 3.

Table 5: Existing Wetland Summary

	Wetland Summ	nary Information	1	
Parameter	Wetland A	Wetland B	Wetland C	Wetland D
Size of Wetland within CE (acres)	0.54	0.09	<0.01	0.17
Wetland Type (NCWAM Classification)	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Bottomland Hardwood Forest
Wetland NCWAM Rating	Low	Low	Low	Low
Mapped Soil Series	Toxaway/Rosma n	Rosman	Тохаwау	Toxaway/Codor us
Drainage Class	VPD/WD	WD	VPD	VPD/SPD
Soil Hydric Status	Yes/No	No	Yes	Yes/No
Source of Hydrology	Ditch Overflow	Ditch Overflow	Surface Runoff	Groundwater Discharge
Restoration or enhancement method (hydrologic, vegetative, etc)	Hydrologic	Hydrologic	None	Hydrologic
	Wetland Summ	nary Information	ı	
Parameter	Wetland E	Wetland F	Wetland G	Wetland H
Size of Wetland within CE (acres)	<0.01	0.03	0.01	0.13
Wetland Type (NCWAM Classification)	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Bottomland Hardwood Forest
Wetland NCWAM Rating	Low	Low	Low	Low
Mapped Soil Series	Toxaway	Toxaway	Delanco	Codorus/Delanc o
Drainage Class	VPD	VPD	MWD	SPD/MWD
Soil Hydric Status	Yes	Yes	No	No
Source of Hydrology	Groundwater Discharge	Groundwater Discharge	Groundwater Discharge	Ditch Overflow
Restoration or enhancement method (hydrologic, vegetative, etc)	Hydrologic	Hydrologic	None	Hydrologic
	Wetland Summ	nary Information	ı	
Parameter	Wetland I	Wetland J	Wetland K	Wetland L
Size of Wetland within CE (acres)	0.02	0.11	0.16	0.04
Wetland Type (NCWAM Classification)	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Bottomland Hardwood Forest
Wetland NCWAM Rating	Low	Low	Low	Low
Mapped Soil Series	Codorus	Codorus/Dela nco	Codorus/Bradson	Codorus
				i

Drainage Class

SPD

SPD/MWD

SPD/WD

SPD

Soil Hydric Status	No	No	No	No					
Source of Hydrology	Groundwater Discharge	Groundwater Discharge	Groundwater Discharge	Ditch Overflow					
Restoration or enhancement method (hydrologic, vegetative, etc)	Hydrologic	Hydrologic	Hydrologic	Vegetative					
Wetland Summary Information									
Parameter	Wetland M	Wetland N	Wetland O	Wetland P					
Size of Wetland within CE (acres)	<0.01	<0.01	0.01	0.01					
Wetland Type (NCWAM Classification)	Headwater Forest	Headwater Forest	Headwater Forest	Headwater Forest					
Wetland NCWAM Rating	Medium	Medium	Medium	Medium					
Mapped Soil Series	Codorus	Codorus	Codorus	Tate					
Drainage Class	SPD	SPD	SPD	WD					
Soil Hydric Status	No	No	No	No					
Source of Hydrology	Groundwater Discharge	Groundwater Discharge	Groundwater Discharge	Groundwater Discharge					
Restoration or enhancement method (hydrologic, vegetative, etc)	Vegetative	Vegetative	Vegetative	Vegetative					
	Wetland Sumn	nary Informatior							
Parameter	Wetland Q	Wetland R	Wetland S	Wetland T					
Size of Wetland within CE (acres)	0.14	0.15	1.62	0.04					
Wetland Type (NCWAM Classification)	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Bottomland Hardwood Forest	Headwater Forest					
Wetland NCWAM Rating	Low	Low	Low	Medium					
Mapped Soil Series	Tate/Bradson	Codorus/Dela nco	Codorus/Bradson	Codorus					
Drainage Class	WD/WD	SPD/MWD	SPD/WD	SPD					
Soil Hydric Status	No	No	No	No					
Source of Hydrology	Groundwater Discharge	Groundwater Discharge	Groundwater Discharge	Groundwater Discharge					
Restoration or enhancement method (hydrologic, vegetative, etc)	Vegetative	Vegetative	Vegetative	Vegetative					
	Wetland Sumn	nary Informatior	ı						
Parameter	Wetland U	Wetland V	Wetland W						
Size of Wetland within CE (acres)	0.04	<0.01	0.28						
Wetland Type (NCWAM Classification)	Headwater Forest	Headwater Forest	Bottomland Hardwood Forest						
	Medium	Medium	Low						
Wetland NCWAM Rating	Medium	Wealum	LOW						

Drainage Class	SPD	SPD	VPD	
Soil Hydric Status	No	No	No	
Source of Hydrology	Groundwater Discharge	Groundwater Discharge	Groundwater Discharge	
Restoration or enhancement method (hydrologic, vegetative, etc)	Vegetative	Vegetative	Vegetative	

3.5.2 Hydric Soils

A preliminary soil investigation was performed by a licensed soil scientist (LSS) on November 15, 2017. At the preliminary stage, soil borings were taken in and around the proposed project boundary to confirm the presence of potentially hydric soils. An additional detailed soils investigation was performed by the same LSS on October 24, 2018 to expand the study area and map the location and extents of hydric soils within the project area. The results of these investigations, along with existing hydrology data and site observations were used to indicate wetland re-establishment potential. Preliminary soils mapping for Henderson County via the NRCS Web Soils Survey shows on Site soils as Toxaway, Rosman, and Codorus. The LSS observed higher clay content than the above soil series and noted that site soils are more like the Hemphill and Chatuge soil series depending on site locations and current hydrology.

Soil borings taken during the investigation were classified as one of the following: non-hydric, depleted soils lacking hydrology indicators, depleted soils with hydrology indicators, and depleted soils with clay/loam subsoils. Areas mapped with depleted soils indicating hydric potential are proposed for wetland restoration. Many of the areas mapped as depleted soils with hydrology were delineated as jurisdictional wetlands and are proposed for wetland rehabilitation. Areas mapped with depleted soils which lack hydrology indicators are proposed for wetland re-establishment. Copies of the preliminary and detailed LSS reports along with borings location maps and typical soil profiles are included in Appendix 7.

3.5.3 Existing Hydrology

Fifteen groundwater monitoring gages were installed throughout the proposed wetland restoration boundary to evaluate the existing hydrology on the Site. Gages 1 through 8 were installed in October of 2018. Gages 9 through 16 were installed in April of 2019. Groundwater gage 5 was eliminated during the additional gage install based on the Site conditions, proposed gage locations, and potential equipment malfunctions. As such, Gages 1 through 8 show Site groundwater data from January 1, 2019 through September 4, 2019. Gages 9 through 16 show Site groundwater data from April 17, 2019 to September 4, 2019. An evaluation of the existing ground water gage data is shown below in Table 6. Additionally, plots of the existing groundwater gage data are included in Appendix 7.

Review of the data from the gages suggests that four of the fifteen gages currently exhibit wetland hydrologic regime under normal rainfall conditions based on a consecutive saturation threshold of 26 days during the growing season (12%). Groundwater gage 1 (Figure 2) is within the proposed wetland rehabilitation area which is separate from current agriculture and currently delineates as jurisdictional wetland; it was anticipated that this area would currently meet expected wetland hydrology standards. Groundwater gages 2, 8, and 9 (Figure 2) are installed the furthest from major ditching activities on-site and currently exhibit hydrology considered typical for floodplain wetlands. Gage data for these locations supports that the proposed mitigation approach of filling ditching and restoring ditched streams will raise hydrology within currently ditched areas to adequately meet wetland hydrology standards. Groundwater gages installed within the current agricultural area proposed for wetland restoration exhibit drained hydrology from adjacent agricultural ditches. A rapid recession of groundwater tables after precipitation events can be seen in existing hydrology plots.

	SUMMARY OF GROUNDWATER GAGE RESULTS FOR EXISTING SITE HYDROLOGY								
Gage	Consecutive Days in Growing Season Wells Met Groundwater Depth Criterion Under Normal Rainfall Conditions (Days)	Consecutive Percent Growing Season Wells Groundwater Depth Criterion Under Normal Rainfall Conditions (%)	Evaluated Dates	Wetland Approach					
1	51	23.8%	4/1/19-11/1/19	Rehabilitation					
2	44	20.6%	4/1/19-11/1/19	Re-establishment					
3	10	4.7%	4/1/19-11/1/19	Re-establishment					
4	6	2.8%	4/1/19-11/1/19	Re-establishment					
6	13	6.1%	4/1/19-11/1/19	Re-establishment					
7	13	6.1%	4/1/19-11/1/19	Re-establishment					
8	28	13.1%	4/1/19-11/1/19	Re-establishment					
9	35	16.4%	4/16/19-11/1/19	Re-establishment					
10	15	7.0%	4/16/19-11/1/19	Re-establishment					
11	6	2.8%	4/16/19-11/1/19	Re-establishment					
12	6	2.8%	4/16/19-11/1/19	Re-establishment					
13	6	2.8%	4/16/19-11/1/19	Re-establishment					
14	12	5.6%	4/16/19-11/1/19	Re-establishment					
15	3	1.4%	4/16/19-11/1/19	Re-establishment					
16	13	6.1%	4/16/19-11/1/19	Re-establishment					

Table 6: Existing Groundwater Monitoring Gage Data and Analysis Results

3.6 Existing Conditions - Streams

The Site includes three perennial streams: Banner Creek, UT1, and UT2. The stream assessments were conducted by Wildlands on December 18, 2018. NC DWR Stream Identification Forms (Version 4.11) and USACE Stream Assessment Method (NC SAM Version 2.1) forms are included in Appendix 5. Stream features are described in detail below. Tables 7a-7b provide a summary of existing stream conditions within the project limits. Existing conditions are also illustrated in Figure 6.

3.6.1 Banner Creek Reach 1

Banner Creek enters the project area at the northern limits of the Site and flows to the south toward the French Broad River. The stream valley is unconfined with a broad flat floodplain. Mature hardwoods are located directly along the stream corridor, usually near top of bank, for approximately 70% of the reach. Beyond top of bank the floodplain consists of a large fescue field maintained as lawn by the landowner. The stream is relatively low slope throughout this reach (water slope of 0.6%) and contains strong bedform consisting of riffles, pools, and runs. In addition, depositional point bars along meander bends and some depositional bench areas were identified during assessment. Streambed material consisted mostly of gravel and small cobbles as well as sand and silt. While the stream does exhibit some meandering, the sinuosity and belt widths are both very low, likely due to stream straightening and channelization in the past.

A majority of Banner Creek Reach 1 is in Stage V: Aggradation and Widening of the Simon channel evolution model. Several banks exhibit actively eroding raw banks located along the outside of meander bends. Bank sloughing along riffles and runs was also noted. The stream is incised (BHR of 2.2) throughout the reach. The stream most closely classified as a C4 stream type (cross section plots provided in Appendix 6.)

3.6.2 Banner Creek Reach 2

Banner Creek Reach 2 begins as the stream exits from the tree-lined banks of Reach 1. The wide, flat floodplain continues through this reach with bank and floodplain vegetation consisting of fescue and large swaths of sedges and other wetland/riparian vegetation. Large, woody vegetation is almost non-existent along the reach with just a few small trees being present. Here the stream is much more ditch-like and exhibits very little meandering, likely due to historical straightening and manipulation. Bedform is less prevalent in Reach 2 when compared with Reach 1, however, some riffles, step pools, and grade control (small, woody drops) were noted during assessment. Streambed material is similar to Reach 1 with gravel and cobbles present, as well as sand and silt.

A majority of Banner Creek Reach 2 is classified in Stage IV: Degradation and Widening. Sloughing banks were noted along a majority of the reach and small active headcuts were also identified in several areas of the reach. A Bank Height Ratio (BHR) of 1.4 for the reach indicated the stream is slightly incised and the stream is classified as a C4 type stream.

3.6.3 Banner Creek Reach 3

Banner Creek Reach 3 begins at the large easement break that spans a non-project property parcel and the existing culvert under Banner Farm Road. Once past this culvert the stream flows into the floodplain of the French Broad River which is broad and very flat within the project boundaries. The current land use of the floodplain is for row crop production, typically corn or soybeans, with crop production extending very close to the top of bank of Banner Creek. These fields were noted as being persistently wet and even inundated at times during the assessment period. Here, Banner Creek has been heavily manipulated to promote drainage from the agricultural fields. No meanders are present in this reach as the stream has been straightened/channelized and bedform is non-existent. While there is some cobble in the streambed, a majority of the material is sand and silt. Although the stream has been highly manipulated, it is classified as a Rosgen C-type stream.

Banner Creek Reach 3 is characterized as being in Stage III: Degradation. The reach is incised with a BHR of 1.7 calculated (cross section plots provided in Appendix 8.)

3.6.4 Banner Creek Reaches 4a and 4b

Banner Creek Reach 4 begins after the confluence with UT2 at the Site. The reach is broken into two slightly different reaches, Reaches 4a and 4b, due to the changing stream characteristics within the reach. The surrounding floodplain conditions are the same as described for Reach 3 – persistently wet, row crop fields managed to the stream top of bank. Reach 4a stream conditions are also very similar to Reach 3 – a highly channelized ditch with evidence of recent maintenance. Some eroded banks and sloughed banks are noted. No bedform or drops are identified in the reach and streambed material consisted of sand and silt. After the confluence with UT1, Banner Creek Reach 4b begins and the stream increases in depth in the landscape and becomes incised with a BHR of 2.1, higher than Reach 3 or Reach 4a. The slope also decreases to between 0.1% and 0.4%. This reach is thought to be highly influenced by the stage of the French Broad River and was noted to be entirely in backwater flow conditions during flooding events that occurred during the stream assessment period. Reach 4b does contain mature woody vegetation along its banks and depositional areas along low benches that occur intermittently below the existing top of bank. The bed of the stream is characterized as completely

covered in sand with few other particle sizes present. Both reaches are labeled as Rosgen C-type streams.

Banner Creek Reach 4a was identified as being in Stage IV: Degradation and Widening. The reach is channelized and incised and there is evidence that streambanks are eroding and sloughing into the stream. Reach 4b is also classified as Stage IV: Degradation and Widening, however, Reach 4b may also undergo periods of Stage V: Aggradation and Widening when under backwater conditions.

3.6.5 UT1

UT1 enters the project area as a small incised stream that has likely been moved to the toe of a small slope at some point in history. While the stream has been straightened/channelized, some bedform does exist in this upper area of the stream including short riffles and small pools. A majority of the floodplain is agricultural row crops managed similarly to the agricultural fields adjacent to Banner Creek Reach 3 and 4. At its upstream extent, the stream makes a hard-southern turn through a culvert crossing and shows evidence of channel maintenance for agriculture. Evidence of active maintenance of the channel was present during the assessment period. The bottom width of the channel is quite large and contains several depositional bars and some vegetation growing in the channel. Signs of active bank sloughing are also present and, in some cases, small, vegetated benches have formed within the existing channel. While some gravel and cobble were identified in the upper area of UT1, a majority of the streambed consists of sand and silt material.

Overall, the stream is very incised with a BHR of 2.1. The channel slope is very low (0.3%) and the stream is classified as a Rosgen type E/C channel. UT1 is classified as Stage IV: Degradation and Widening.

3.6.6 UT2

UT2 enters the project area through a culvert under Banner Farm Road. The stream has established mature woody vegetation along its top of bank for the first 250 feet of stream. This section of the stream displays some riffle-pool bedform and a few small, stable drops with tree roots acting as grade control. The floodplain beyond top of bank is agricultural row crops that are managed similarly to the floodplain described adjacent to Banner Creek Reaches 3 and 4.

Beyond the initial 250 feet of stream, the stream becomes very channelized and displays no bedform. The stream flows parallel to the flow of the French Broad River until the confluence with Banner Creek Reach 3. Streambed material for the entire reach consists of sand and silt material.

The overall slope for the reach is 0.5% and the stream is slightly incised with a BHR of 1.4. The stream is classified as an E/C5 stream and was thought to be in Stage IV: Degradation and Widening.

3.6.7 Site Ditches

The Site contains an extensive ditch network shown in Figure 2 that has been maintained to drain adjacent agricultural fields for planting. Wildlands did thorough investigation during the jurisdictional determination to understand what channels on the Site are ditches and what channels are streams that have been historically altered. Resources including stream identification forms, historic aerial photography, discussion with the property owners, upstream sources of hydrology, drainage area delineation, discussion with the Army Corps of Engineers, USGS quadrangle mapping, NRCS soil survey mapping, and Site observations were all used to determine stream jurisdiction. Based on information gathered from these sources, it was determined that UT1, UT2, and Banner Creek are all jurisdictional streams. Outside of these specific reaches, ditches were jurisdictionally determined to be either open water features or existing linear wetland features depending on their Site location. Jurisdictional determinations of ditches are shown in Figure 6, an approved Preliminary Jurisdictional Determination is included in Appendix 3 and stream identification forms for all reaches are included in Appendix 5.

Table 7a: Stream Resources

Parameter	Banner Creek Reach 1	Banner Creek Reach 2	Banner Creek Reach 3	Banner Creek Reach 4a	Banner Creek Reach 4b
Valley Confinement (confined, moderately confined, unconfined)	Unconfined	Unconfined	Unconfined	Unconfined	Unconfined
Drainage Area (acres)	390	422	429	634	722
Perennial, Intermittent, Ephemeral	Ρ	Ρ	Ρ	Ρ	Ρ
NCDWR Water Quality Classification			WS-IV (WSW)		
Stream Classification ¹	C4	C4	C4	C5/4	C5/4
Evolutionary Trend (Simon)	V. Aggradation and Widening	IV. Degradation and Widening	III. Degradation	IV. Degradation and Widening	IV. Degradation and Widening
FEMA Classification	ation system (Respon		Zone AE		

1. The Rosgen classification system (Rosgen, 1994) is for natural streams. These channels have been heavily manipulated by livestock and man and therefore may not fit the classification category as described by this system. Results of the classification are provided as a basis for discussion of existing channel form.

Table 7b: Stream Resources

Parameter	UT1	UT2	
Valley Confinement (confined, moderately confined, unconfined)	Unconfined	Unconfined	
Drainage Area (acres)	83	192	
Perennial, Intermittent, Ephemeral	Ρ	Ρ	
NCDWR Water Quality Classification	WS-IV (WSW)		
Stream Classification ¹	E/C5	E/C5	
Evolutionary Trend (Simon)	IV. Degradation and Widening	IV. Degradation and Widening	
FEMA Classification	Zone AE		

1. The Rosgen classification system (Rosgen, 1994) is for natural streams. These channels have been heavily manipulated by livestock and man and therefore may not fit the classification category as described by this system. Results of the classification are provided as a basis for discussion of existing channel form.

4.0 Watershed and Channel Disturbance and Response

As discussed above in Section 3.3, there has been very little change in the watersheds of the project reaches for several decades. Some small-scale residential development and clearing of small areas of forest has occurred but these minor disturbances are the not the main driver of the degradation of the Site. The primary causes of degradation on the Site were the original clearing, production of crops, and channelization of the project streams, which occurred prior to 1964 (the date of the earliest available aerial photo). The channelization involved straightening and deepening of the streams. Multiple ditches were also cut through wetland areas draining the historic wetlands. This manipulation resulted in degraded terrestrial and aquatic habitats, denuded riparian zones, cutting the streams off from their floodplains, lowering of the local water table, and elimination of wetland functions. It also led to increased shear stresses in the streams which may have caused additional degradation of the channels over time. Signs of on-going bank erosion are apparent in places along most of the project reaches. The current condition of most the reaches on the Site is that they are severely incised and have on-going lateral erosion. The areas that were previously wetland have been somewhat drained (although evidence of extended wet periods was still present) and the hydrophytic vegetation has been removed.

5.0 Functional Uplift Potential

5.1 Wetland Functional Uplift Potential

Areas proposed for wetland re-establishment are currently lacking adequate vegetation and hydrology to provide functions typically associated with wetlands. Areas proposed for wetland rehabilitation are currently providing some functions typically associated with wetlands, however functions are actively diminished through management for agricultural practices. Functional uplift to existing wetland areas is expected as a result of the proposed activities on site. Elimination of the extensive ditch network will decrease drainage and raise the water table. Construction of appropriately sized stream channels will restore stream and floodplain connection and re-establish a natural hydrologic interaction. Wetland restoration areas will be planted with native vegetation to create an appropriate forested riparian wetland community. These activities will result in uplift of various wetland functions including increased water storage, increased groundwater recharge, water quality treatment through retention, and increased habitat for aquatic and terrestrial species.

5.2 Stream Functional Uplift Potential

The potential for functional uplift for streams is described in this section according to the Stream Functions Pyramid (Harman, 2012). The Stream Functions Pyramid describes a hierarchy of five stream functions, each of which supports the functions above it on the pyramid (and sometimes reinforces those below it). The five functions in order from bottom to top are hydrology, hydraulics, geomorphology, physicochemical, and biology.

5.2.1 Hydrology

Detailed land use and land cover analysis provided in Section 3.3 and Table 4. Vegetation within the watershed has been historically maintained for agricultural use. Primary land use is cited as agricultural practices including row cropping. Clearing and agricultural planting and harvesting typically results in reductions in rainfall interception and evapotranspiration, leading to an increase in runoff and water yield (Dunne and Leopold, 1978). Higher runoff typically increases peak flows and base flows with varying magnitude based on watershed size. Initial increases in water yield usually change over time as vegetation regrows and crops are planted. Clearing of the land in this particular watershed (27% remains forested) likely increased local hydrology during agricultural establishment. However, these changes primarily occurred several decades ago (prior to 1964 based on available aerial photography). Wildlands

believes the watershed has adjusted to its hydrologic regime and is currently stable. No measurements of existing conditions in watershed hydrology have been made to date for this project.

A stream restoration project performed at a specific Site does not often result in uplift to hydrology (Harman, 2012). Even though a major portion of agricultural land use will be converted to forest via the proposed planting within the conservation easement, this will not result in improvements to the rainfall-runoff relationship at the watershed scale. Therefore, there is little opportunity to improve the watershed hydrology function.

5.2.2 Hydraulics

The streams on the Site have been historically straightened, channelized, and dredged to increase agricultural production in the immediate floodplains. With altered slopes, disconnected floodplains, elevated bank height ratios, and low entrenchment ratios, the overall hydraulic function has been severely degraded and would be classified as non-functioning.

The channels will be reconstructed with appropriate pattern to encourage helical flow and appropriate hydraulic function. The dimension of the proposed streams is designed with a bank height ratio of 1.0, connecting the streams to the relic floodplain wetlands and restoring a natural flooding regime. Shear stress in the channels will be maintained at functioning levels and groundwater exchange and adjacent wetland hydrology will be improved as a result of the increased frequency of floodplain inundation. The post-construction hydraulic function will be functioning.

5.2.3 Channel Geomorphology

The channelization and incision of the streams on the Site represent streams within Stage III/IV of the Simon Evolution Model. There is no pattern to the existing project streams which have all been straightened and channelized. Beyond Banner Creek Reach 1, no woody debries or riparian buffer exisits along the project streams. Streams within the floodplain of the French Broad River are devoid of bedform and inundated with fine sediment from active upstream bank erosion. The geomorphic function of the project streams is rated as not functioning.

This project offers an excellent opportunity to improve the geomorphology function on the Site. The incision and bank erosion will be corrected. Restored streams with the appropriate pattern for the surrounding landscape will be constructed. Bedform will be diversified and spaced with appropriate design ratios. Habitat will be added to the system through construction of instream structures and bank revetments and the riparian buffer will be replanted anywhere it has been cleared for agricultural purposes. Post construction, the geomorphology function will be rated functioning.

5.2.4 Physicohemical

No water quality sampling has been conducted on the project streams. As outlined in Section 2.0 of this report, the 2009 French Broad RBRP identifies major stressors within the basin as excessive nutrient enrichment, habitat fragmentation, habitat degradation, and streambank erosion. The RBRP also states that stressors from agriculture-related sources have impacted the biological communities within the basin, including federally threatened and endangered species. The agricultural operations at the project level are likely a major contributor of nutrients and other pollutants to the project streams. In addition, sediment loading is likely high due to bank erosion on the project streams. However, because no water quality data are available to evaluate the current level of physicochemical functioning, this function is not rated.

There is potential to improve the physicochemical functioning of the project streams at the Site level. Removing the crop production will decrease the nutrient and sediment loads to the project streams and ultimately the French Broad River. Restoring a large forested wetland within the floodplain of the French Broad River will provide increased retention times and surface water storage, which will increase

treatment potential and decrease nutrient loading. Filling agricultural ditches and replacing them with forested wetland areas will remove a potential point source for surface water to discharge contaminants into the receiving waters. Ultimately, while not quantified with water quality testing, the level of physicochemical functioning will be improved at the Site level.

5.2.5 Biology

There are no available biological data for the Site, however, the habitat conditions on the Site are poor based on a lack of stream bedform, no riparian vegetation, and current agricultural management.

There is opportunity to improve the instream and riparian habitat in addition to the physicochemical function described above. Habitat will be improved by reconstructing channels of appropriate size with a variety of types of riffles and pools of varying depth. Other types of instream structures with a variety of woody materials will be incorporated into the restoration reaches further diversifying habitat types. In addition, re-establishment of floodplain forested wetlands within active agricultural fields will provide continuous and diversified natural corridors along French Broad River. However, because there are no pre-construction biological data the functional uplift potential will not be rated.

5.2.6 Overall Functional Uplift Potential for Streams

Due to severely degraded hydraulics and geomorphology (both not-functioning) and suspected poor biology and physicochemical functions of the Site, there is substantial potential for ecological uplift. Due to the proposed improvements described above, the functional uplift potential is a reclassification from not-functioning to functioning. This change in overall classification is related to improvements in hydraulics and geomorphology between the existing and proposed conditions and expected improvements in physicochemical and biology functions. The watershed hydrology function will not be substantially improved by the project because watershed-scale reforestation would be required to drive improvement in this function. The degree to which the physicochemical and biology functions can improve on the Site is limited by the watershed conditions beyond the project limits, upstream water quality, and the presence of source aquatic communities upstream and downstream of the Site.

6.0 Regulatory Considerations

Table 8, below, is a summary of regulatory considerations for the Site. These considerations are explained in more detail in Sections 6.1-6.3.

Parameters	Applicable?	Resolved?	Supporting Docs?
USACE Public Notice - Section 404	Yes	Yes	SAW-2018-01153 ¹
Water of the United States - Section 404	Yes	No	PCN ²
Water of the United States - Section 401	Yes	No	PCN ²
Endangered Species Act	Yes	Yes	Appendix 9
Historic Preservation Act	Yes	Yes	Appendix 9
Coastal Zone Management Act	No	No	N/A
FEMA Floodplain Compliance	Yes	No	No-Rise Certification
Essential Fisheries Habitat	No	N/A	N/A

Table 8: Regulatory Considerations

1. Public Notice was issued on August 28, 2018.

2. PCN to be submitted to DMS with Final Mitigation Plan for IRT submittal.

6.1 Biological and Cultural Resources

A Categorical Exclusion for the Banner Farm Mitigation Site was approved by the Federal Highway Administration (FHWA) on January 11, 2019 (Appendix 9). This document included investigation into the presence of threatened and endangered species on the Site protected under The Endangered Species Act of 1973, as well as any historical resources protected under The National Historic Preservation Act of 1966. The biological conclusion for the Site, per the Categorical Exclusion research is that "any incidental take that may result from the associated activities [from the project] is exempt under the 4(d) rule." All correspondence with USFWS and a list of Threatened and Endangered Species in Henderson County, NC is included in Appendix 9. The State Historic Preservation Office was contacted regarding on-site cultural resources. The State Historic Preservation Office recommended a comprehensive survey be conducted to identify and evaluate any archaeological sites within the project area. The results of a Phase I Identification Survey determined the project would not involve any notable archaeological resources. For additional information and regulatory communications please refer to the Categorical Exclusion document.

6.2 FEMA Floodplain Compliance and Hydrologic Trespass

The project stream channels do not have an associated regulated floodplain and are not located along a studied section of stream. However, all project streams lie within the floodway and flood fringe of the French Broad River, mapped FEMA Zone AE (Figure 7). French Broad River base flood elevations have been defined and a detailed study has been performed with floodway areas mapped on Henderson County FIRM panels 9539, 9630, and 9640. Wildlands will coordinate with Henderson County on any local permitting requirements. No-rise hydraulic modeling and an associated flood study are anticipated as a part of the permitting process. Wildlands has navigated this permitting process multiple times on similar sites and believes a no-rise condition can be obtained based on the Site's current design.

6.3 401/404

As part of the existing conditions assessment at the Site, Wildlands documented and classified the onsite wetlands. Classifications were applied based on wetland function and potential for wetland improvement through the stream design approach. Based on these classifications, Wildlands designers used this information to prioritize higher quality wetlands for avoidance and minimization and to incorporate stream design approaches to improve hydrologic and vegetative conditions of impaired wetlands. Wetlands within the conservation easement or limit of disturbance will be denoted in the final construction plans on the erosion and sediment control plan and detail plan sheets, as well as in the project specifications. Floodplain grading will result in temporary impacts to wetlands while channel realignment and ditch filling will result in permanent impacts. Wildlands expects a net gain of wetland area and function as a result of filling drainage ditches and construction of the new channels. Table 9 estimates the anticipated impacts to wetland areas. The PCN, including these data, will be submitted with the Final Mitigation Plan.

		Permanent (P) Impact		Temporary (T) Impact		
Jurisdictional Feature	Classification	Acreage	Type of Activity	Impact Area (acres)	Type of Activity	Impact Area (acres)
Wetland A	Bottomland Hardwood Forest	0.54	Fill Ditch	0.262	Wetland rehabilitation grading	0.276

Table 9: Estimated Impacts to Wetlands and Ditches

			Permanent (P)	mpact	Temporary (T) Impact
Jurisdictional Feature	Classification	Acreage	Type of Activity	Impact Area (acres)	Type of Activity	Impact Area (acres)
Wetland B	Bottomland Hardwood Forest	0.09	Fill Ditch	0.089	-	-
Wetland D	Bottomland Hardwood Forest	0.17	Fill Ditch	0.116	-	-
Wetland E	Bottomland Hardwood Forest	0.01	-	-	Wetland rehabilitation grading	0.003
Wetland F	Bottomland Hardwood Forest	0.03	-	-	Wetland rehabilitation grading	0.026
Wetland G	Bottomland Hardwood Forest	0.01	-	-	Wetland rehabilitation grading	0.005
Wetland H	Bottomland Hardwood Forest	0.13	Fill Ditch	0.127	-	-
Wetland I	Bottomland Hardwood Forest	0.02	-	-	Wetland rehabilitation grading	0.024
Wetland J	Bottomland Hardwood Forest	0.11	Fill Ditch	0.111	-	-
Wetland K	Bottomland Hardwood Forest	0.16	Fill Ditch	0.150	-	-
Wetland L	Bottomland Hardwood Forest	0.04	-	-	Wetland rehabilitation grading	0.040
Wetland M	Headwater Forest	0.003	Conversion to stream resource	0.003	-	-
Wetland N	Headwater Forest	0.003	Conversion to stream resource	0.002	Floodplain grading	0.001
Wetland O	Headwater Forest	0.01	Conversion to stream resource	0.002	Floodplain grading	0.012
Wetland Q	Bottomland Hardwood Forest	0.14	Conversion to stream resource	0.002	Floodplain grading	0.138
Wetland R	Bottomland Hardwood Forest	0.15	Conversion to stream resource	0.145	Floodplain grading	0.009
Wetland S	Bottomland Hardwood Forest	1.62	Conversion to stream resource	0.607	Wetland Rehabilitation	0.903
Wetland T	Headwater Forest	0.04	Conversion to stream resource	0.004	Floodplain grading	0.040

		Permanent (P) Impact		mpact	Temporary (T) Impact	
Jurisdictional Feature	Classification	Acreage	Type of Activity	Impact Area (acres)	Type of Activity	Impact Area (acres)
Wetland U	Headwater Forest	0.04	Conversion to stream resource	0.041	Floodplain grading	0.002
Wetland V	Headwater Forest	0.01	Conversion to stream resource	0.002	Floodplain grading	0.002
Wetland W	Bottomland Hardwood Forest	0.28	-	-	Reestablishment grading	0.284
Open Water 1	Open Water	0.40	Fill Ditch	0.40	-	-
			Total P Impact	2.063	Total T Impact	1.765

7.0 Mitigation Site Goals and Objectives

The project aims to improve stream functions as described in Section 5 through stream restoration, wetland rehabilitation and re-establishment, and riparian buffer re-vegetation. The project goals and related objectives and outcomes are described in Table 10. Project goals are desired project outcomes and are verifiable through measurement and/or visual assessment. Objectives are activities that will result in the accomplishment of goals. The project will be monitoredafter construction to evaluate performance as described in Section 10 of this report.

Goal	Objective	Expected Outcomes
Improve the stability of stream channels.	Construct stream channels that will maintain a stable pattern and profile. Stabilize stream bed and banks using bank vegetation, bank revetments, and in-stream structures to protect restored/enhanced channels.	Reduce and control sediment inputs; Contribute to protection, or improvement, of a Water Supply IV- Highly Developed water.
Improve instream habitat.	Install habitat features such as constructed riffles, cover logs, and brush toes into restored/enhanced streams. Add woody materials to channel beds. Construct pools of varying depth.	Improve aquatic communities in project streams.
Reconnect channels with floodplains and riparian wetlands.	Reconstruct stream channels with appropriate bankfull dimensions and depth relative to the existing floodplain.	Reduce shear stress on channel; Hydrate adjacent wetland areas; Filter pollutants out of overbank flows.
Restore wetland hydrology, soils, and plant communities.	Restore and enhance riparian wetlands by raising stream beds, plugging and filling existing agricultural ditches, removing berm	Improve terrestrial habitat; Contribute to protection of or improvement of a Water Supply IV- Highly Developed water.

Table 10: Mitigation Goals and Objectives

Goal	Objective	Expected Outcomes
	material over relic hydric soils, and planting native wetland species.	
Restore and enhance native floodplain vegetation.	Plant native tree species in riparian zone where currently insufficient.	Reduce and control sediment inputs; Reduce and manage nutrient inputs; Provide a canopy to shade streams and reduce thermal loadings; Contribute to protection, or improvement, of a Water Supply IV- Highly Developed water.
Permanently protect the project Site from harmful uses.	Establish conservation easements on the Site.	Ensure that development and agricultural uses that would damage the site or reduce the benefits of the project are prevented.

8.0 Design Approach and Mitigation Work Plan

8.1 Design Approach Overview

The design approach for this Site was developed to meet the goals and objectives described in Section 7 which were formulated based on the potential for uplift described in Section 5. The design is also intended to provide the expected outcomes in Section 7, though these are not tied to performance criteria. The project streams will be reconnected with an active floodplain and the channels will be reconstructed with stable dimension, pattern, and profile that will transport the water and sediment delivered to the system. Adjacent wetlands will be restored (either re-established or rehabilitated) by plugging and filling an extensive network of agricultural drainage ditches. The floodplains and wetlands will be planted with native tree species where necessary. Instream structures will be constructed in the channels to help maintain stable channel morphology and improve aquatic habitat. The entire project area will be protected in perpetuity by a conservation easement. Table 11 summarizes the stressors of each project reach and the mitigation activities expected to address those stressors.

The design approach for this Site utilized a combination of analog and analytical approaches for stream restoration. Reference reaches were identified to serve as the basis for design parameters. Channels were sized based on design discharge hydrologic analysis. This approach has been used on many successful restoration projects and is appropriate for the goals and objectives for this Site.

Project Reach	Primary Stressors/Impairments	Approach	Mitigation Activities
Banner Creek Reach 1	Poor Buffer, bank erosion, incised	R	Restoring dimension, pattern, and profile, replanting buffers, protecting with conservation easement
Banner Creek Reach 2	Poor buffer, channelization, bank erosion, incised	R	Restoring dimension, pattern, and profile, replanting buffers, protecting with conservation easement
Banner Creek Reach 3	Non-existent buffer, channelization, bank erosion, incised, no bedform	R	Restoring dimension, pattern, and profile, replanting buffers, protecting with conservation easement

Table 11: Stream Stressors and Restoration Approach	Table 11: S	Stream Str	essors and	Restoration	Approach
---	-------------	------------	------------	-------------	----------

Project Reach	Primary Stressors/Impairments	Approach	Mitigation Activities
Banner Creek	Non-existent buffer,		Restoring dimension, pattern, and profile,
Reach 4a	channelization, bank erosion,	R	replanting buffers, protecting with
RedCI14d	incised, no bedform		conservation easement
Banner Creek	Poor Buffer, Channelization,		Restoring dimension, pattern, and profile,
Reach 4b	bank erosion, incised, weak	R	replanting buffers, protecting with
Redch 40	bedform		conservation easement
	Non-existent buffer,		Restoring dimension, pattern, and profile,
UT1	channelization, bank erosion,	R	replanting buffers, protecting with
	incised, no bedform		conservation easement
	Non-existent buffer,		Restoring dimension, pattern, and profile,
UT2	channelization, bank erosion,	R	replanting buffers, protecting with
	incised, no bedform		conservation easement

8.2 Reference Streams

Reference streams provide geomorphic parameters of a stable system, which can be used to inform design of stable channels of similar stream types in similar landscapes and watersheds. A total of twelve reference reaches were identified for the Site and used to support the design of the project streams (Figure 8). Project streams were clustered into four groups based on important design factors such as drainage area, slope, channel type, and bed material. Reference reaches sharing similar characteristics were assigned to each of the four project stream groups to help develop design parameters (Tables 12a – 12d). Only five of the twelve reference reaches were used in the discharge analysis to strengthen the reference reaches are located within the Piedmont region of North Carolina (10 of 12) but exhibit similarities in channel geometry and planform characteristics to project reaches on Site that are dictated by the low slope, broad valley floodplain within which the Site is situated. Geomorphic parameters for these reference reaches are summarized in Appendix 10. The references to be used for the specific streams are shown in Tables 13a – 13d and a description of each reference reach is included below.

	UT to South Mills River	Cooleemee Plantation	Deep Creek	UT to Lyle Creek
Stream Type:	B4c/E4	C5	C5	C5
		Dimension,	Dimension,	Dimension,
Reference Type:	Discharge	Pattern,	Pattern,	Pattern,
		Profile	Profile	Profile

Table 12b: Stream Reference Data Used in Development of Design Parameters for Banner Creek Reaches 4a-4b
--

	Long Branch	Foust Creek	Boyd Branch	UT to Catawba River Reach 1
Stream Type:	C/E4	C4	E4	E5
Reference Type:	Dimension, Pattern, Profile	All	All	Discharge

	Candy Creek	UT at Lake Norman Group Camp (upstream)	Reedy Creek Nature Preserve – South Fork	
Stream Type:	-	E5	B4c	
Reference Type:	Dimension, Pattern, Profile	Dimension, Pattern, Profile	Discharge	

Table 12c: Stream Reference Data Used in Development of Design Parameters for UT1

Table 12d: Stream Reference Data Used in Development of Design Parameters for UT2	
Table 124. Stream Reference Buta Osea in Bevelopment of Besign Farameters for OTE	

	UT to Lyle Creek	UT to South Crowders	Reedy Creek Nature Preserve – South Fork
Stream Type:	C5	E4	B4c
Reference Type:	Dimension, Pattern, Profile	Dimension, Pattern, Profile	All

8.2.1 UT to South Mills River

UT to South Mills River is a 0.64 square mile tributary to South Mills River in the Upper French Broad basin located in Mills River, NC. The tributary drains a predominantly forested watershed and is impounded by a small pond halfway up the watershed where the valley is narrower and steeper. The reference reach is located lower in the watershed where it flows through the left floodplain of the South Mills River before emptying into it. A stable succession of riffles and pools are common throughout this sinuous reach, with pools located in meander bends and downstream of logs and debris jams. Channel slope is 0.72 percent and sinuosity measures approximately 1.5. The channel classifies as a Rosgen B4c/E4 stream type due its moderate entrenchment (1.8) and low width to depth ratio (8.6). The channel along much of the reach contains small, stable bankfull benches with recent sediment deposition. The reach is bordered by a forested wetland along much of the left bank and agriculture (active row crops) on the right bank beyond a narrow vegetative buffer. Vegetation within the riparian corridor consists of a lush understory of ferns and other herbaceous species and an overstory that includes American beech and holly trees.

8.2.2 UT to Catawba River Reach 1

UT to Catawba River Reach 1 is a perennial stream that flows into the wide and flat Catawba River floodplain from the adjacent steep wooded valley, east of NC Highway 10. The stream drains a 1.60-square mile watershed. The stream reach is well-connected to the floodplain, has a low width to depth ratio ranging from 8.1 to 8.9, and has a channel slope of 0.5%. The channel substrate is predominantly sand and exhibits good bedform diversity with well-established pools at the outside of channel bends, several well-developed riffles, and habitat features such as woody debris jams, fallen logs across the channel, and root mats along the banks. Reach 1 classifies as a Rosgen E5 stream type.

8.2.3 Foust Creek

Foust Creek is located within the Carolina Slate Belt region of the Piedmont, approximately 12 miles south of Burlington, NC, in Alamance County. The Foust Creek reference reach has a drainage area of 1.4 square miles, a valley slope of 0.95% and a channel slope of 0.9%. The reach is classified as a C4 stream

type and has a d50 of 43 mm. This reach flows through a mature forest and, although it is stable, it lacks sinuosity.

8.2.4 Boyd Branch

The reference reach of Boyd Branch is located within the Bent Creek Experimental Forest near Asheville. Boyd Branch drains a 0.9-square mile, forested watershed. The site was surveyed in December 2014 by Confluence Engineering and was found to have a measurable pattern on USGS quadrangle maps. The reach has a slope of approximately 0.9 percent. With a width-depth ratio of 11.8, an entrenchment ratio greater than 3 and gravel sized bed material, Boyd Branch is classified as an E4 stream type.

8.2.5 Reedy Creek Nature Preserve – South Fork

South Fork is a headwater reference reach located within the Reedy Creek Nature Preserve in Charlotte, NC, and drains into Reedy Creek. The stream receives drainage from a 0.23 square mile watershed. South Fork here is dominated by gravels and cobbles. The stream's width-to-depth ratio ranges from 6.0 to 11.7 and the overall channel slope is 0.67%. Habitat features include meander pools, pools formed around logs and debris, rock riffles, root mats, and woody debris in the stream. This portion of South Fork classifies as a Rosgen B4c-type stream.

8.2.6 UT to Lyle Creek

UT to Lyle Creek is a perennial stream flowing through the broad, flat floodplain of Lyle Creek. UT to Lyle's watershed is wooded, and the stream is fully connected to the floodplain with a bank height ratio of 1.0 and an entrenchment ratio of over 5.0. The width-to-depth ratio ranges from approximately 15 to 18, and the overall valley slope is approximately 0.8%. UT to Lyle Creek has a sinuosity of 1.1 and classifies as a straight, C5 stream channel. In-stream habitat features within this reach include shallow pools, woody debris, and small sections of tree roots.

8.2.7 Cooleemee Plantation

The Cooleemee Plantation Reference Reach is in southeast Davie County, NC approximately 9 miles east of Mocksville, NC. The reference tributary flows through the wider floodplain of the Yadkin River. A detailed survey of the stream was conducted in January 2017. The C-type stream channel has a 0.68 square mile drainage area with a width to depth ratio between 15 and 24. The valley and stream slope are relatively flat (less than 0.5%). Soils on the site were mapped as Chewacla. Vegetation on the site included white oak, red oak, river birch, green ash, sycamore, tulip poplar, and American beech.

8.2.8 UT to South Crowders

UT to South Crowders is a perennial stream located in Crowder Mountain State Park that receives 0.22 square miles of drainage from the forested mountain side. The stream is quite sinuous given the 2.57% valley, with a sinuosity of 2.2. UT to South Crowders is an example of a classic, small E4 stream within a higher sloped setting, with a width to depth ratio ranges from 5.7 to 8.2 and a high entrenchment ratio ranging from 3.7 to 4.2. The stream is fully connected to its alluvial floodplain, and supports varied habitats including root mats, deep meander pools, rock riffles, and woody debris in the channel.

8.2.9 UT at Lake Norman Group Camp (upstream)

Group Camp Tributary is located in Lake Norman State Park and receives drainage from a predominantly forested watershed and portions of two park shelters. The stream has a sinuosity of 1.6 and an entrenchment ratio ranging from 1.9 to 2.5. The width to depth ratio is 5.2 to 5.5. The channel slope is 1.7%. Group Camp tributary is classified as a Rosgen E5b.

8.2.10 Deep Creek

Deep Creek Mitigation Bank is in the Yadkin River basin in southeast Yadkin County, NC. Originally designed and constructed in 2003, the intent of the mitigation effort was to restore a Bottomland

Hardwood Forest Wetland by restoring wetland hydrology in borderline hydric soil areas. Stream restoration efforts included fillings ditches and modifying stream dimension, pattern, and profile. Wildlands identified that the site location, project intent, and soil conditions were like that of the Banner Farm Mitigation Site. A short profile and cross-section of the restored C-type channel were surveyed to evaluate its stability and similarity to the proposed reaches at the Banner Farm Mitigation Site. The low-sloped, moderate width-depth ratio channel was consistent with project goals for Banner Farm Mitigation Site.

8.2.11 Candy Creek

This reference reach is an unnamed tributary to Candy Creek (UT3) in Guilford County, NC which was identified as a preservation reach for the Candy Creek Mitigation project. The 0.10 square mile drainage originates from a farm pond at the southeast end of the Candy Creek Mitigation project, has low bank heights, good connection to the floodplain, and flows through an existing jurisdictional, forested wetland. Vegetation within the buffer is typically a mature community similar to the Southern Piedmont Small Floodplain and Riparian Forest ecotype, bordered by a mature Southern Piedmont Mixed Mesic Forest ecotype.

8.2.12 Long Branch

Long Branch is located in the central portion of Orange County northwest of Chapel Hill. The drainage area is 1.49 square miles and the land use within the drainage area is low-density residential, agricultural lands, and forest. The Long Branch reference site was classified as a C4 channel type. The channel has a width to depth ratio ranging from 8.8 to 13.8 and an entrenchment ratio of >2.5. The reach has a valley slope of 0.6% while the channel slope is 0.4%. The bed material D50 for the reach is 7.6 mm. Two riffles were surveyed during the site visit. These riffles had width to depth ratios of 9.4 and 7.9 and entrenchment ratios of 11.7 and 12.1. Some cross sections are more typical of E stream types while others would classify as a C stream type.

8.3 Design Channel Morphological Parameters

Reference reaches were an important source of information used to develop the pattern and profile design parameters for the streams. Ranges of pattern parameters were developed within the reference reach parameter ranges with some exceptions based on best professional judgement and knowledge from previous projects. The streams were designed with pool widths to be at least 1.2 times the width of riffles to provide adequate point bars and riffle pool transition zones. Pool depths were designed to be a minimum of 1.2 times deeper than riffles to provide habitat variation. Cross-section parameters such as area, depth, and width were designed based on the design discharge, stable bank slopes, and width to depth ratios similar to reference conditions. Key morphological parameters for the restoration reaches are listed in Tables 13a through 13d. Complete morphological tables for existing, reference, and proposed conditions are located in Appendix 7.

Existing Parameters		Reference Parameters			Proposed Parameters			
Parameter	Banner Creek Reach 1	Banner Creek Reach 2	Banner Creek Reach 3	Cooleemee Plantation	Deep Creek	UT to Lyle Creek	Banner Creek Reach 1 & 2	Banner Creek Reach 3
Contributing								
Drainage Area	390	422	429	435	429	160	390-422	429
(acres)								
Channel/Reach Classification	C4	C4	C4	C5	C5	C5	C4	C4

Table 13a: Summary	of Morphologica	l Parameters for Banne	r Creek Reach 1-3
Table Loar ourman		i arameters for Barme	

	Exist	ing Param	neters	Refere	nce Paramet	ters	Proposed F	Parameters
Parameter	Banner Creek Reach 1	Banner Creek Reach 2	Banner Creek Reach 3	Cooleemee Plantation	Deep Creek	UT to Lyle Creek	Banner Creek Reach 1 & 2	Banner Creek Reach 3
Design Discharge Width (ft)	9.8	10.4	7.4	11.7 – 15.9	12.9	7	13.5	14.8
Design Discharge Depth (ft)	1.7	2.3	2.1	1.2 – 1.4	2.3	1.05	1.7	1.7
Design Discharge Area (ft ²)	12.0	11.6	11.9	9.9	17.1	3.8	14.0	17.3
Design Discharge Velocity (ft/s)	3.4	4.0	3.6	1.6	2.4	-	2.8	2.3
Design Discharge (cfs) ¹	40.5	45.7	42.5	16	40.9	18	40-43	44
Water Surface Slope	0.0057	.007	.009	0.0027	0.0028	0.004	0.002	0.002
Sinuosity	1.08	1.01	1.00	1.1	1.6	1.1	1.2	1.3
Width/Depth Ratio	8.2	9.3	4.6	14.4 – 24.8	9.6	16.6	13.0	13
Bank Height Ratio	2.2	1.4	1.7	1.1 - 1.4	0.9 – 1.1	0.75	1.0-1.1	1.0-1.1
Entrenchment Ratio	2.5	14.4	4.2	8.8 – 12.5	10.5+	6.05	2.2 - 5	2.2-5.0

¹ Existing parameters design discharge values are based on existing condition stream cross-sections, slopes, and field identified bankfull calls. Proposed parameter design discharge values are based on design discharge analysis (see section 8.4 for more details).

	Existing Parameters ¹	Refe	rence Parame	Proposed Parameters		
Parameter	Banner Creek Reach 4	Long Branch	Foust Creek	Boyd Branch	Banner Creek Reach 4a	Banner Creek Reach 4b
Contributing Drainage Area (acres)	722	954	896	576	634	722
Channel/Reach Classification	C5/4	C/E4	C4	E4	C5/4	C5/4
Design Discharge Width (ft)	19.4	16.7	19.0	15.1	19.8	20.8
Design Discharge Depth (ft)	2.6	2.4	2.0	1.8	2.5	2.5
Design Discharge Area (ft ²)	32.4	67.5	24.0	14.6	30.3	32.7
Design Discharge Velocity (ft/s)	1.8	-	-	-	2.0	2.3
Design Discharge (cfs) ²	57.5	112.5	95.2	51	60	70
Water Surface Slope	.001	0.004	0.009	0.009	0.0013	.0017
Sinuosity	1.02	1.3	-	1.6	1.20	1.20
Width/Depth Ratio	11.4	10.9	15	15.9	13.0	13.0
Bank Height Ratio	2.1	1.35	-	1.0	1.0	1.0
Entrenchment Ratio	1.2	3.4	4.1	2.65	2.2 - 5	2.2 – 5.0

Table 13b: Summary of Morphological Parameters for Banner Creek Reach 4a-4b

¹ Streams have been heavily ditched, straightened, and otherwise altered, and therefore they do not display any natural pattern or cross-sectional traits.

² Existing parameters design discharge values are based on existing condition stream cross-sections, slopes, and field identified bankfull calls. Proposed parameter design discharge values are based on design discharge analysis (see section 8.4 for more details).

	Existing Parameters ¹	Reference	e Parameters	Proposed Parameters
Parameter	UT1	Candy Creek	UT at Lake Norman Group Camp (upstream)	UT1
Contributing Drainage Area (acres)	81 64		64	81
Channel/Reach Classification	E/C5	-	E5	E5
Design Discharge Width (ft)	5.2 - 10.0	4.3	4.3	9.0
Design Discharge Depth (ft)	1.4 – 1.7	0.5	1.1	1.5
Design Discharge Area (ft ²)	3.6 – 7.8	1.35	3.47	8.4
Design Discharge Velocity (ft/s)	0.6 – 2.3	-	-	1.7
Design Discharge (cfs) ²	5 - 8	2.1	12.2	14
Water Surface Slope	.003	0.0057	0.02	0.0020
Sinuosity	1.10	-	1.6	1.30
Width/Depth Ratio	7.5 – 12.9	12.9	5.4	10.0
Bank Height Ratio	2.0 - 2.1	1.0	1.0	1.0
Entrenchment Ratio	2.4 – 2.9	13.7	2.3	2.2 – 8.0

Table 13c: Summary of Morphological Parameters for UT1

¹ Streams have been heavily ditched, straightened, and otherwise altered, and therefore they do not display any natural pattern or cross-sectional traits.

² Existing parameters design discharge values are based on existing condition stream cross-sections, slopes, and field identified bankfull calls. Proposed parameter design discharge values are based on design discharge analysis (see section 8.4 for more details).

Table 13d: Summary of Morphological Parameters for UT2

	Existing Parameters ¹	Re	Reference Parameters		
Parameter	UT2	UT to Lyle Creek	UT to South Crowders	Reedy Creek Nature Preserve – South Fork	UT2
Contributing Drainage Area (acres)	190	160	141	128	190
Channel/Reach Classification	E/C5	C5	E4	B4c	C4
Design Discharge Width (ft)	4.6	7.0	7.3	9.7	12.0
Design Discharge Depth (ft)	1.2	1.1	1.4	1.6	1.7
Design Discharge Area (ft ²)	4.1	3.8	7.6	10.9	12.8

	Existing Parameters ¹	Re	Reference Parameters		
Parameter	UT2	UT to Lyle Creek	UT to South Crowders	Reedy Creek Nature Preserve – South Fork	UT2
Design Discharge Velocity (ft/s)	2.3	-	-	-	1.7
Design Discharge (cfs) ²	10-13	18.0	22.0	29.3	25.0
Water Surface Slope	0.0047	0.004	0.0091	0.0067	0.0020
Sinuosity	1.28	1.10	1.2	1.31	1.30
Width/Depth Ratio	5.1	16.6	6.9	8.9	11.0
Bank Height Ratio	1.4	0.8	1.8	2.0	1.0
Entrenchment Ratio	3.5	6.1	4.0	1.7	2.2 – 5.0

¹ Streams have been heavily ditched, straightened, and otherwise altered, and therefore they do not display any natural pattern or cross-sectional traits.

² Existing parameters design discharge values are based on existing condition stream cross-sections, slopes, and field identified bankfull calls. Proposed parameter design discharge values are based on design discharge analysis (see section 8.4 for more details).

8.4 Design Discharge Analysis

Multiple methods were used to develop bankfull discharge estimates for each of the project restoration reaches: the NC Rural Piedmont Regional Curve (Harman et al., 1999), a regional flood frequency analysis, a site-specific reference reach curve, and data from previous successful design projects. The resulting values were compared and concurrence between the estimates was evaluated. The purpose of using multiple methods to estimate bankfull discharge is to eliminate reliance on a single method as the basis of channel design. However, the methods commonly produce different results so professional judgement must be used to select the final design discharge for each restoration reach. For this analysis, there was some concurrence between the NC Rural Piedmont Regional Curve, the regional flood frequency analysis and the site-specific reference reach curve, however, the surveyed cross-sections were consistently lower than the other methods. Each of the methods used to estimate discharge are described below and the results of the analysis are summarized in Table 14 and illustrated in Figure 9.

8.4.1 Published Regional Curve Data

The NC Rural Piedmont Regional Curve published by Harman et al. in 1999 was used to estimate discharge based on the drainage area of each design reach. While the Site is not located in the Piedmont physiographic province, it was determined that the streams may be more similar to Piedmont streams due to the Site location in the landscape. As mentioned previously, a majority of the Site is located within the French Broad River floodplain, which is quite wide and flat at the Site location. As a result, existing streams display slopes of less than 2%, much lower than the 2-5% slopes that are often represented in the NC Mountain Regional Curve. The decision to use the Rural Piedmont Regional Curve was further confirmed when its results more closely agreed with the other discharge determination methods as compared to the NC Mountain Regional Curve. The updated NC regional curve (Walker, unpublished, shown as Alan Walker Curve on Figure 9) was not used in determining discharge values due to the lack of smaller drainage area streams in the dataset. The discharge values derived from the Rural Piedmont Regional Curve were consistently the highest among the methods utilized in this analysis and were considered the upper end of the range of probable discharge values.

8.4.2 Regional Flood Frequency Analysis

Wildlands developed a regional flood frequency analysis tool using published USGS gage station records for drainage basins within the Piedmont based on methodology described in the 2009 USGS publication *Magnitude and Frequency of Rural Floods in the Southeastern United States* (Weaver, et al., 2009). While the Site is not located in the Piedmont physiographic province, it was determined that the streams may be more similar to Piedmont streams due to the Site location in the landscape, as described in Section 8.4.1.

Wildlands evaluated 103 stations referenced in the publication, 12 stations with drainage areas ranging from 0.28 to 7.63 square miles were used in the development of the tool. The applicable stations were selected based on several criteria such as geographic region, drainage area, watershed characteristics, extent of available data, and dates of data collection. Peak flow data from the 12 USGS stream stations used for the creation of this relation were analyzed for homogeneity using Hosking and Wallis (1993) heterogeneity statistics in the statistics program R[®]. All stations were found to be acceptably homogeneous. The included gages are as follows:

- USGS 02227422 Crooked Creek Tributary near Bristol, GA (DA = 0.28 mi²)
- USGS 0209173190 Unnamed Tributary to Sand Run near Lizzie, NC (DA = 0.57 mi²)
- USGS 02227990 Satilla River Tributary 2 at Atkinson, GA (DA = 0.0.67 mi²)
- USGS 02169960 Lake Marion Tributary near Vance, SC (DA = 2.12 mi²)
- USGS 01668300 Farmers Hall Creek near Champlain, VA (DA = 2.18 mi²)
- USGS 021355013 Davis Branch near Sumter, SC (DA = 2.50 mi²)
- USGS 02136361 Turkey Creak near Maryville, SC (DA = 4.25 mi²)
- USGS 021720725 Canton Creek near Moncks Corner, SC (DA = 4.82 mi²)
- USGS 02148090 Swift Creek near Camden, SC (DA = 4.90 mi²)
- USGS 02130800 Backswamp near Darlington, SC (DA = 6.22 mi²)
- USGS 01661800 Bush Mill Stream near Heathsville, VA (DA = 6.77 mi²)
- USGS 02102908– Flat Creek near Iverness, NC (DA = 7.63 mi²)

The data from these 12 gage stations were used to develop flood frequency curves for the 1-year, 1.2year, 1.5-year, 1.8-year, and 2-year recurrence interval discharges. These relations can be used to estimate discharge of those recurrence intervals for ungaged streams in the same hydrologic region and were solved to determine the discharge of each project reach with the drainage area as the input. The Wildlands regional flood frequency analysis 1.2-year predictions are plotted in Figure 9. They are within the confidence interval for the NC Piedmont Regional Curve and consistent with reference reach data collected by Wildlands.

8.4.3 Site-Specific Reference Reach Curve

Five reference reaches were identified for this project to aid in developing bankfull design discharge. Each reference reach was surveyed to develop information for analyzing drainage area-discharge relationships as well as development of design parameters. Stable cross-sectional dimensions and channel slopes were used to compute a bankfull discharge with the Manning's equation for each reference reach. The resulting discharge values were plotted against drainage area to make a project-specific regional curve (Figure 9) and was used to compare with other discharge estimation methods. The discharge values derived from the resulting reference reach curve were comparable to those reported for the Wildlands regional flood frequency analysis (1.2-year event) and the on-site surveyed cross-sections but were generally lower than those of the published NC Rural Piedmont regional curve.

8.4.4 Existing Bankfull Indicators (Manning's Equation)

Riffle cross-sections were surveyed on several of the design reaches at the Site, totaling 6 cross-sections. Bankfull indicators were identified in the field during the survey and were included in the cross-section data collection. Manning's equation was used to calculate a corresponding discharge using the survey data for channel slope. While the existing channels at the site have been heavily manipulated in the past, the cross-section locations were selected such that obvious bankfull features were present and in locations were the cross-section was not heavily influenced by nearby infrastructure (culverts, bridges, etc). For Banner Creek, the surveyed cross-sections suggested that the bankfull discharge was 16% to 25% below the discharge that other methods predicted. Similarly, the on-site cross-sections for UT1 and UT2 were approximately 50% lower than discharges predicted by other methods. These lower estimated bankfull flows calculated via cross-section may have been due to several farm ponds within the immediate watershed providing some runoff mitigation in the watershed. For this reason, these field measured cross-sections were given particular weight compared to other methods as they were thought to better reflect the on-the-ground realities of the watershed. As a result, many of the final design values selected for discharge are lower than those predicted by the other methods.

8.4.5 Design Discharge Analysis Summary

The results of the design discharge analysis provided a range of discharge values. The most obvious convergence in values was between the existing bankfull indicators (Manning's equation) and the site-specific reference reach curve for all reaches of Banner Creek. These values were always within 20% of each other, and consistently the two lowest discharge predictions for the analysis. These two methods were more heavily weighted when determining the final design discharge for this site because they were thought to account for the low site slopes and in the case of the existing bankfull indicators the mitigation of runoff throughout the watershed. The regional flood frequency analysis and NC Rural Piedmont Curve varied between 25% and 50% higher than the existing bankfull indicators (Manning's Equation) and the site-specific reference reach and were considered the top end of probably discharge at the Site.

UT1 and UT2 predictive discharge methods produced a slightly different result. Again, the existing bankfull indicators predicted a much lower discharge than the other methods (approximately 50% lower). However, the site-specific reference reach values were much closer to the NC Rural Piedmont and Regional flood frequency analysis methods, varying by less than 5 cfs between methods for each reach. Due to this convergence of evidence, selected design values for these smaller streams were increased above the discharge predicted by the existing bankfull indicators.

Final design discharges were selected based on analysis of the methods discussed in this section. The final design discharges for the larger reaches (Banner Creek) weighted the site-specific reference reach and the existing bankfull indicators heavily to arrive at values that were well under the discharges predicted by the regional curves and the regional flood analysis. For the smaller reaches (UT1 and UT2), the methods were more evenly weighted and the selected design value is closer to the predicted values of the NC Rural Piedmont curve, the regional flood frequency analysis, and the site specific reference reach. The goal of the design was to achieve a balance between streams that would be highly connected to their riparian wetlands by flooding frequently and not undersizing channels to the point where vegetation and aggradation could choke the channel. Table 14 below gives a summary of the discharge analysis results and a plot illustrating the design discharge data is shown in Figure 9.

		Banner Creek Reach 1	Banner Creek Reach 2	Banner Creek Reach 3	Banner Creek Reach 4a	Banner Creek Reach 4b	UT1	UT2
DA (acres)		390	422	429	634	722	81	190
DA(sq. mi.)		0.61	0.66	0.67	0.99	1.13	0.13	0.30
NC Rural Piedmont Regional Curve (cfs)		62	66	67	88	97	20	37
Regional Flood Frequency Analysis (cfs)	1.2-year event	54	57	58	77	85	17	32
	1.5-year event	77	82	83	110	121	25	46
Site Specific Reference Reach Curve		49	51	51	63	68	21	33
On-Site Surveyed Cross-Sections		41	46	43	58	58	5-8	10-13
Selected Design Discharge		40-43	40-43	44	60	70	14	25

Table 14: Summary of Design Discharge Analysis for Banner Creek design reaches

8.5 Sediment Transport Analysis

To gain a better understanding of the quantity of sediment supplied to the project streams and how it is transported through the system, Wildlands performed a qualitative assessment of sediment supply and sources in the project watershed. In addition, Wildlands also performed a competence analysis to analyze the ability of the proposed streams to transport certain sizes of sediment and to support material sizing for constructed riffles. The following sections detail the sediment supply and competence analyses.

8.5.1 Sediment Supply

The watershed study consisted of an analysis of past, current, and projected future conditions of the watershed using the National Land Cover Database (NLCD) as well as historic and current aerial photography to characterize past and current land cover and potential sediment sources. For a breakdown of land uses, refer to Section 3.3 above. The watershed was largely cleared prior to the earliest aerial photo (1964) with predominantly agricultural land use. Some forested areas in the northern area of the watershed were present at this time and seemed to have remained undisturbed until the present. Since 1964, the most notable change in land cover has been some low-density residential development in the northern and eastern parts of the watershed.

Relatively low-density residential development and continued heavy agricultural presence are expected to continue to be the most important land uses in the watershed for the foreseeable future. The contributing areas above the beginning of the project are relatively stable and are not expected to become an important source of sediment to the stream system.

Visual inspection of the streams did reveal some excess sediment and sand in the stream with some depositional areas in all reaches, but especially large depositional areas were noted in the lower reaches of Banner Creek (Reach 4a and 4b) and UT1 and UT2. There was evidence of occasional maintenance of these reaches (removal of sediment and debris) to promote continued flow toward the system outlet. The land use around these reaches is agricultural row crops, typically farmed to within feet of the top of bank. The source of sediment in these reaches was thought to be from overland flow out of the agricultural fields as well as from the stream banks throughout the project area, including the upper reaches of Banner Creek (Reaches 1-3) where serious streambank erosion was noted.

The lower reaches of the project (Banner Creek Reaches 4a and 4b) see backwater conditions when the stage of the French Broad River is elevated. Based on Site observation, the French Broad River has a very high sand load and when these channels backwater, deposition often occurs within the existing stream channels. Wildlands can not control the French Broad River watershed, stage, or sediment regime and expects to see backwater conditions and potential aggradation and associated degradation in constructed stream channels following large flow events. These issues were considered during design and selection of specific parameters including proposed channel width to depth ratios, max channel pool depths, and proposed stream slope and profile. Some cycling of aggradation and degradation in these lowers reaches and their floodplains during large storm events is anticipated even after construction.

With the establishment of a stable riparian buffer around the project streams and by stabilizing stream banks during restoration, the sediment load to the project streams is expected to be reduced to a supply-limited condition (i.e. there is capacity to move sediment load greater than the supplied load). Therefore, the design channels are expected to remain stable and pass the sediment delivered from the watershed. The focus of the sediment transport analysis is therefore based on an evaluation of stream competence.

8.5.2 Competence Analysis

In natural streams, shear stress increases corresponding to an increase in discharge until the point at which the channel is flowing full and gains access to the floodplain. Floodplain access disperses the flow and prevents further increases in shear stress within the channel. This relationship of shear stress, channel dimension, and discharge influences erosion potential within the channel and the channel's ability to transport certain sizes of sediment. The latter is a measure of stream competency, which is quantified by shear stress as calculated by the Shields (1936) and Andrews (1984) equation described by Rosgen (2001). The results of the competence analysis are shown in Table 15.

	Banner Creek Reach 1	Banner Creek Reach 2	Banner Creek Reach 3	Banner Creek Reach 4a	Banner Creek Reach 4b	UT1	UT2
Abkf (sq ft)	14.0	14.0	14.0	30.3	32.7	8.4	12.8
Wbkf (ft)	13.5	13.5	13.5	19.8	20.8	9.0	12.0
Dbkf (ft)	1.0	1.0	1.0	1.5	1.6	1.0	1.1
Schan (ft/ft)	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Bankfull Velocity (fps)	2.8	2.8	2.8	2	2	1.7	1.7
Bankfull Shear Stress, t (lb/sq ft)	0.12	0.12	0.12	0.18	0.19	0.11	0.13
Movable particle size (mm)	9 - 33	9 - 33	9 - 33	13 - 44	14 - 45	8 - 30	9 - 33

Table 15: Results of Competence Analysis

Wildlands performed a competence analysis using the proposed stream dimensions and existing bed material determined from riffle 100 counts and subpavement samples. The goal of the analysis is to evaluate the potential stability of the channels post construction and determine if bed material will need to be supplemented with coarser material to prevent instability. Based on the analysis above, competence for Banner Creek Reach 1 and 2 indicate that there is likely enough shear stress to move the majority of existing bed material. The D50 of Banner Creek Reach 1 and 2 was a medium gravel (D50 of 11mm and 10mm respectively) and the Shields Curve indicated the movable particle size would be approximately 9mm for both reaches indicating that marginal aggradation could occur. The Rosgen curve predicted a far larger mobile particle size of 33mm. Based on this analysis and observations,

Wildlands will plan to reuse as much bed material as possible and supplement some of the bed material with coarser particles at high sloped transition zones and areas with erosion potential. Additionally, grade control structures including rock sill, log sills, and j-hooks will be used to prevent downcutting and provide habitat.

A majority of the bed material for Banner Creek Reach 3, 4a, 4b, UT1, and UT2 is sand with typical bed material particle sizes less than 2mm. The results of the analysis indicate that there is enough shear stress to move the sampled bed material. The range of particle sizes that will become mobile during a bankfull event is within size range of gravel. While this competence analysis could indicate potential for degradation, Wildlands believes these results are more influenced by the inundation of sand particles from adjacent agriculture within the bed and not related to erosional forces from high shear stresses. Based on these results, Wildland plans to supplement existing bed material with coarser material in riffles to increase the D50. However, Wildlands wants sand particles to remain mobile to ensure adequate geomorphic processes occur to maintain channel dimensions within the bottomland. Grade control structures will be installed along the bottomland reaches, particularly at transitional or high sloped sections of the reach.

8.6 Wetland Design

8.6.1 Wetland Design Overview

The project includes a large wetland re-establishment component, and smallerer components of wetland rehabilitation and creation. Areas proposed for wetland re-establishment and creation contain relic or currently hydric soils which were likely forested floodplain wetlands prior to agricultural conversion. These areas are currently and historically drained by the numerous drainage ditches and channelized streams that dissect the site. Areas of wetland creation are proposed as creation based on the grading depths required as part of the stream restoration design. Wetland rehabilitation zones are currently jurisdictional wetlands that are not fully functioning due to hydrologic and vegetative alterations. Analysis of existing groundwater hydrology data and Wetbud (version 01.07.00.56) simulations of existing and proposed conditions were used to support wetland re-establishment design.

8.6.2 Hydric Soils within Wetland Restoration Areas

Wildlands contracted with a Licensed Soil Scientist (LSS) to perform an investigation of the presence and extent of hydric soils on the Site. Further discussion of the hydric soils investigation and its results are included in Section 3.5.2 of this report. Overall, soils mapping for Henderson County via the NRCS Web Soils Survey shows on Site soils as Toxaway, Rosman, and Codorus. The LSS observed higher clay content than the above soil series and noted that Site soils are more like the Hemphill and Chatuge soil series depending on Site locations and current hydrology. Copies of the preliminary and detailed LSS reports along with borings location maps and typical soil profiles are included in Appendix 7.

8.6.3 Reference Wetland

Wildlands performed a property search using ArcGIS Online and remotely searched for potential reference wetland sites that share similar hydric soils, landscape position and hydrology as those in need of restoration on the mitigation site. Two reference wetland sites were selected for the project.

The Henry Fork reference wetland area is in a similar landscape position within the floodplain of a larger stream system. While the reference wetland is in the Piedmont Physiographic province, it is within a Bottomland Hardwood Forest with primary hydrology provided by adjacent tributaries, similar to the targeted project community. Soils mapped within the reference wetland are in the Hatboro series, which is listed as a geographically associated soil series to the Site mapped soil series (Toxaway and Rosman). Furthermore, Table 1 (wetland saturation threshold values) within the Wilmington District Stream and Wetland Compensatory Mitigation Update dated October 24, 2016, lists the wetland

saturation range for Hatboro soil series as 12% to 16%, which is consistent with saturation periods listed for the mapped soils series within the project area.

The Sierra Nevada reference wetland is 5.5 aerial miles from Banner Farm Mitigation site. The area is a mature bottomland hardwood forest that is located within the floodplain of the French Broad River. The surrounding forest is dominated by mature hardwoods and the herbaceous stratum is dominated by obligate sedges. The hydrology of this system is intermittently, temporarily, or seasonally flooded. Based on available aerial photography from 1994-2019 the immediate area has not been altered in that time span. A groundwater monitoring gage was installed on the reference site to document the reference wetland hydrology. Reference gage data including mapping and hydrology plots are included for both proposed reference wetlands in Appendix 7. In the future, this information will be used to provide a comparison for the re-established and rehabilitated wetland hydrology throughout the monitoring period.

8.6.4 Hydrologic Modeling

To further support that proposed Site changes will restore adequate wetland hydrology, average monthly wetland water budget models representing two separate proposed wetland re-establishment areas were developed using Wetbud software version 1.07.00.56. Model runs were performed for the wetland re-establishment areas adjacent to UT1 and UT2 for existing and proposed site conditions. Initial model set up included retrieving historical precipitation and temperature data for model input parameters. Global Surface Summary of the Day (GSOD) Asheville Regional Airport station was used for precipitation and temperature data.

Precipitation and weather data were obtained for historical periods between 1973 and 2019. The Asheville Regional Airport NC WETS station (NC300) was used to define growing season and evaluate dry, normal, and wet years. The dry, average, and wet year calculation tool which follows the procedure outlined by McLeod, 2013 within the Wetbud software was used to rank precipitation data from 1973 to 2019, evaluating annual precipitation and growing season precipitation for a 46-year period of record. Based on the analyzed data, 2007, 2012, and 2003 were determined as dry, average, and wet precipitation years, respectively.

Two existing conditions water budget models were developed based on current site conditions. Water inputs included precipitation and runoff. Precipitation values were measurements from stations listed above, runoff into the wetland was calculated using the SCS/NRCS curve number method. Existing model outputs included potential evapotranspiration (PET), groundwater out, and surface outflow. PET was estimated using the Thornthwaite method, surface outflow was calculated as free water above ground surface flowing out of the wetland and draining to the French Broad River, and groundwater out was used for model calibration based on the observed period of record. The calibration period was set up for January to November of 2019. Modeled wetland water levels within the proposed wetland re-establishment areas were compared to average wetland water budgets measured on Site using installed groundwater gages. A copy of the model calibration plots is included in Appendix 7.

Trends in the observed data are well-represented by the calibration simulations. Although hydrograph peaks between plots of observed and simulated data do not match exactly and the model results underpredict water levels during some periods, relative changes in water table hydrology because of precipitation events correspond well between observed data and model results and under predictions indicate that proposed conditions model results will be hydrologically conservative.

The proposed condition models were developed based on the calibrated existing condition models to predict whether average wetland water levels would be within 12-inches of the soil surface during wet, dry, and average years calculated above. Proposed plans for the site include realigning the streams to

increase sinuosity and raising the stream bed inverts. In addition, the extensive ditch network that currently drains the site will be filled or replaced with appropriately sized stream channels within the wetland zone. Grading is proposed to remove overburden and restore the natural valley topography of the site. Grading proposed within the wetland re-establishment and rehabilitation zones is dictated by minimum stream and valley slopes, restoration of natural topography altered by agriculture, and generation of fill material to fill the existing ditch networks. Benches and floodplains were cut around streams, but overall grading was minimized as much as possible in proposed wetland areas.

Based on the results of the hydric soils investigation outlined in Section 8.5.2 and 8.6.2, hydric soils are within 12 inches of the soil surface for areas proposed for wetland re-establishment on Site. To ensure positive drainage, adequate stream slope, and eliminate previous manipulation within the wetland including berms, side cast piles from ditches, and field crowning, areas of grading are required deeper than 12-inches. With the current stream and wetland design, approximately 3.976 acres of area will be graded more than 12 inches in the wetland re-establishment zone and 0.489 acres of area will be graded more than 12 inches in the wetland rehabilitation zone. A proposed wetland grading plan including valley cross-sections is included with design plans in Appendix 8. The proposed wetland areas will be disked and planted with native wetland plants.

Settings for the proposed condition models were altered to reflect the proposed design changes of the site. The most notable changes to the proposed conditions model were the incorporation of overbank flow from UT1 and UT2 as results of restoring and reconnecting these streams with relic floodplains. Wetbud builds a discharge unit hydrograph for the watershed which is the source of overbank flow. When overbank flow is calculated, daily precipitation data are used to estimate stream discharge for specific precipitation depths. Groundwater out was held constant between existing and proposed model runs to be conservative. While Wildlands believes a reduction in groundwater leaving the site will occur based on the removal of the ditch network, estimating the quantity of this reduction given the limited amount of data would be difficult.

The proposed condition models were run for wet, dry, and average years and results were compared to existing condition model results with focus on the growing season and a minimum saturation threshold of 12-inches below soil surface. Table 16a and 16b compare the number of months where average wetland water levels were within 12 inches of the ground surface. The model results support that proposed Site changes will increase overall hydrology within the proposed wetland areas and bring average wetland water levels within 12-inches of the soil surface for consecutive months, even during low or average precipitation years.

Modeled year	Hydrology Classification	Number and Corresponding Months with Average Wetland Water Levels Within 12-inches of the Ground Surface				
year classification		Existing Conditions Model	Proposed Conditions Model			
2007	Dry Year	2 Months – Jan, Feb	4 months -Jan, Feb, March, April			
2003	Wet Year	2 Months – Jan, Feb	12 months – Jan, Feb, Mar, April, May, June, July, August, Sept, Oct, Nov, Dec			
2012	Normal Year	2 Months – Jan, Feb	5 months – Jan, Feb, Mar, April, May			
2019	Calibration Period	4 months – Jan, Feb, March, April	6 months – Jan, Feb, Mar, April, May, June			

Table 16a Water Budget Components for Wetland Re-establishment along UT1

Modeled year	Hydrology Classification	Number and Corresponding Months with Average Wetland Water Levels Within 12-inches of the Ground Surface				
,	Existing Conditions Model		Proposed Conditions Model			
2007	Dry Year	1 Months – Jan	4 months -Jan, Feb, March, April			
2003	Wet Year	1 Months – Jan	11 months – Jan, Feb, Mar, April, May, June, July, August, Sept, Oct, Nov			
2012	Normal Year	1 Months – Jan	2 months – Jan, Feb			
2019	Calibration Period	4 months – Jan, Feb, March, April	6 months – Jan, Feb, Mar, April, May, June			

Table 16b Water Budget Components for Wetland Re-establishment along UT2

8.7 Project Implementation

8.7.1 Stream Restoration, Enhancement, and Preservation

The proposed Site includes a combination of stream restoration, wetland restoration, and wetland creation activities as described below. Project reaches proposed for restoration are currently heavily impacted by riparian management, bank erosion, and incision. Proposed wetland restoration and creation areas are currently heavily impacted by agricultural ditching, historic hydrologic manipulation, and riparian management. Activities have been selected to provide the highest degree of ecological uplift to the system. Figure 10 provides an overview of the proposed mitigation activities on the Site.

All streams are proposed for restoration. Restoration reaches will be constructed as Priority 1 where grades allow. Priority 2 sections of channel will be constructed where needed to transition grade from off-site tie-in to proposed elevations, avoid hydrologic trespass, and maintain minimum channel slopes. Restoration reaches have been designed to create stable, functional stream channels based on reference reach parameters, design discharge analysis, and sediment transport analysis. Dimension, pattern, and profile have been designed for all restoration reaches to provide a cross-sectional area sized for frequent overbank flows, a stable bed with variable bedforms, and well-vegetated bank slopes. Improved vertical and lateral stability will reduce stream channel erosion. Diverse bedforms will be established using in-stream structures appropriate for the geomorphic settings. These structures will provide grade control to prevent incision and serve as habitat features. Pools will have varied depths to increase habitat diversity and mimic natural streams.

In-stream structures for all reaches will include riffles, boulders sills, log sills, log j-hooks, rock j-hooks, log vanes, brush toe, and cover logs. The structures will reinforce channel stability and serve as habitat features. Constructed riffles will be built from excavated on-site rock when possible. Quarry stone may be used if an on-site source cannot be found. Constructed riffles will incorporate woody material and logs, which will provide varied pore spaces within the riffles and benefit hyporheic exchange processes and habitat formation. The diverse range of constructed riffle types will provide grade control, diversity of habitat, and will create varied flow vectors. Log and rock j-hooks will deflect flow vectors away from banks while adding to habitat diversity. Log and boulder sills will be used to allow for small grade drops across pools. At select outer meander bends, the channel banks will be constructed with brush toe revetments to reduce erosion potential, encourage pool maintenance, and provide varied pool habitat. Similarly, cover logs will also be used in some meander bends to provide pool habitat variability and stream bank stability. Sod harvested on-site and/or coir fiber matting will be used to provide bank protection.

All the project reaches will be placed in a conservation easement to protect the project in perpetuity. The streambanks and floodplains will be planted with native tree and shrub species as described below in Section 8.8.

Banner Creek

The primary stressors to Banner Creek Reach 1 and 2 are riparian buffer management and historic channelization. A lack of riparian vegetation has resulted in the stream downcutting and becoming disconnected with the current floodplain. This lack of floodplain connection has increased shear stresses and caused bank erosion, reducing bedform through fine sediment inundation. Priority 1 restoration is proposed for Banner Creek Reaches 1 and 2, outside transition zones. Banner Creek Reach 1 is designed as a low sinuosity C-type channel to take advantages of existing mature trees while restoring function to the system. Banner Creek 2 is designed as a Rosgen C-type channel that will be meandered through a current jurisdictional wetland proposed for rehabilitation.

Banner Creek Reach 3 and 4 have been heavily impacted by historic agricultural practices including channelization and straightening. Historic land deeds map a property line along Banner Creek Reach 4 and specifically call out stream meandering, which no longer exists in the streams current state. A lack of riparian vegetation and agricultural runoff has resulted in large quantities of fine sediment being introduced into the system, which also receives large volumes of sand load from the French Broad River as noted in Section 8.5.1. Priority 1 restoration is proposed for Banner Creek Reach 3 and Reach 4a outside of transition zones. Adjacent floodplains will be cut down to remove historic agricultural sediment and re-establish a stream and wetland complex in the floodplain of the French Broad River. Banner Creek Reach 4b is proposed for more of a Priority 2 restoration approach as the stream channel flows out of the proposed wetland restoration zones and ties down to the bed elevation of the French Broad River. Wildlands expects to see some backwater conditions and potential aggradation and degradation cycling in lower stream reaches following large flow events. These issues were considered during design and selection of specific parameters of the proposed stream channels.

A vegetated buffer will be established along the entirety of Banner Creek with native species with a target community type of bottomland hardwood forest and alluvial forest. The plantings will improve the riparian habitat, help the restored streams stay stable, shade the streams, and provide a source for LWD and organic material to the stream. In-stream structures will be added for grade control, bank protection, and habitat creation.

<u>UT1 & UT2</u>

UT1 and UT2 are proposed for stream restoration and will be constructed as Priority 1 restoration. The stream bed will be raised so that the bankfull elevation will coincide with the existing floodplain, the cross section will be constructed to convey the design discharge, and pattern will be reconstructed so that the channel meanders throughout flat areas on the historic floodplain where they likely existed prior to alteration. Stream valleys along UT1 and UT2 are typically very flat, with average valley slopes below 0.2%. Generally, this allows for a relatively high sinuosity in the design pattern to reflect the relationship between sinuosity and slope observed in reference reaches.

UT1 is designed as a Rosgen E-type channel with a lower width to depth ratio, higher sinuosity, and irregular meander pattern similar to reference E-type streams. This approach was chosen based on the landscape position of UT1, the channel slope, the adjacency to a large wetland area, and the quantity of fine sediment previously observed within the channel after flooding events in the French Broad River. The lower width to depth ratio was selected to help move fine sediment through the proposed channel and avoid clogging or choking issues observed in similar conditions.

UT2 is designed as a Rosgen C-type channel with a restored profile which will consist of alternating rifflepool bed morphology. Pools will be constructed of varying depth for habitat diversity. The crosssectional dimensions of the design channels will be constructed to frequently inundate adjacent floodplains and wetlands. The reconstructed channel banks will be built with stable side slopes, matted, and planted with native vegetation for long-term stability. Most of the proposed stream length traverses areas with relic hydric soils. Constructing channels in appropriate locations and raising streambeds in these areas will re-establish wetlands and improve the hydrology of existing wetlands.

8.7.2 Wetland Mitigation Activities

This project will include floodplain forested wetland re-establishment, rehabilitation, and creation. Evidence suggests much of the Site was historically wetland prior to relocation and channelization of project streams and subsequent lowering of the water table for agricultural purposes. Wetland reestablishment in relic hydric soils is proposed for most of the project area and nearly all of the proposed stream length will flow through wetland re-establishment zones.

Excavation within proposed wetland areas is dictated by stream profiles and sediment transport. Wetland creation is proposed where stream grading dictates a priority 2 approach with grading depths consistently greater than 12-inches. Relic material deposited over decades onto agricultural fields from flood events from the adjacent French Broad River along with consistent ditching and dredging of project streams has created unnatural levees, berms, and highpoints throughout the proposed wetland area. Historic material has begun to develop hydric soil indicators at many locations throughout the Site. Wildlands proposes to regrade the existing agricultural fields and restore a wide, consistent, and low sloped wetland valley to the project streams while simultaneously filling and plugging the extensive ditch network. Banner Creek Reaches 3 and 4, UT1, and UT2 will be constructed through areas proposed for wetland re-establishment and/or creation such that the streambed elevation will restore the natural water table elevation and natural overbank flooding regime. Ditches located in the fields will be filled to improve hydrology in the surrounding wetlands. Riparian wetlands within the project area will also be planted with native wetland species. Wetland areas will be disked to increase surface roughness and better capture rainfall which will improve groundwater recharge. Furrows will not exceed 6" in depth.

8.8 Vegetation and Planting Plan

The long-term objective of the planting plan is to establish a native riparian buffer composed of species appropriate for the site. The restored buffer will improve riparian habitat and connectivity to other habitat types, maintain stability of restored streams, provide shade, trap sediment, and provide large woody debris and organic matter to streams. The site will be planted to the extents of the conservation easement, except where stands of mature trees exist, following construction. Species designated for planting were selected based on compatibility of silvics with expected site conditions within a given planting zone, observation of reference communities, and best professional judgement. The reference communities are bottomland hardwood forest and Montane Alluvial Forest Large River Subtype. Species lists for each planting zone are listed on Sheet 4.1 of the preliminary design plans.

The wetland and buffer planting zones will be planted with bare root seedlings to the extent of the conservation easement or extent of disturbance where currently forested. The stream channel banks will be planted with live stakes and juncus plugs. Multiple species of herbaceous plugs will also be planted on restoration reaches. Permanent seed will be spread on streambanks, floodplain areas, and all disturbed areas within the conservation easement. Rivercane will be planted on stream banks at the confluence of UT1 and Banner Creek and plantings will continue down Reach 4B to the French Broad River. Plantings must be conducted between November 15 and March 15 per 2016 NCIRT Mitigation Updated Guidance.

Mechanical site preparation will be implemented where necessary to create soil physical properties favorable for tree growth. In the agricultural field, the planted area will be ripped in a grid-like pattern with a maximum rip shank spacing of six feet. Ripping will be performed during the driest conditions feasible to maximize shatter of the plow pan. Construction practices are intended to minimize effects to soil properties, but some impacts are unavoidable. Ripping may be implemented to reduce soil compaction resulting from haul roads, stockpile areas, etc. Where grading is required, topsoil will be stockpiled and reapplied. Soil amendments may be incorporated to augment survival and growth of planted vegetation as determined necessary by soil testing.

Preconstruction invasive treatments have been completed on site. Invasive vegetation within the project area will be treated and/or mechanically removed during construction, but additional treatment is expected. Invasive species presence will be monitored and treated as necessary throughout the monitoring period as described in Appendix 9.

8.9 Project Risk and Uncertainties

Wildlands acknowledges that changes proposed at the Site may result in an increase in the baseline water table elevation adjacent to the proposed wetland restoration. The increase in water table elevation could be considered negative for agricultural production in the adjacent fields. This subject has been discussed with all the current property owners and Wildlands holds a signed agreement which represents acknowledgment by all participating property owners. The current property owners believe that due to the site's poor drainage and the flooding of the French Broad River that the best use of the land may be hunting instead of agriculture. Crop yields have historically been low in comparison to other nearby land. Once construction of the project is completed, the property owners plan to use the project parcels and restored area solely for hunting instead of farming. Based on conversations with the property owner, an increase in water table elevation is considered positive for their desired hunting conditions.

As noted in previous sections of the report, French Broad River flooding could result in backwater and aggradation and degradation cycling of fine sediments within the proposed stream channels and on adjacent floodplains. Wildlands considered this risk during design and discusses adaptive management options in Appendix 10 and how this may affect long term monitoring in Section 9.0 below.

8.10 Proposed Breaks and Crossings

One internal easement crossing and three external easement breaks are proposed at the Site to maintain landowner access, use of adjoining property, and allow for overhead utility crossings. Crossings are summarized and numbered below in Table 17. Where possible, overhead utility line crossings and proposed culvert crossings were paired to reduce the number of required breaks along the project. The entire easement area can be accessed for construction, monitoring, and long-term stewardship from Banner Farm Rd.

No.	Width (ft)	Location	Internal or External	Crossing Type
1	80	Banner Creek Reach 1	External	Existing landowner driveway. Existing 72" CMP culvert to remain in place.
2	30	Banner Creek Reach 1	Internal	Existing utility easement ¹
3	317	Banner Creek Reach 3	External	Banner Farm Road and existing utility easement ¹ . Existing 60" CMP culvert under Banner Farm Road to remain in place.

Table 17: Easement Breaks and Crossings

No.	Width (ft)	Location	Internal or External	Crossing Type
4	128	UT1	External	Existing utility easement ¹ and existing culvert crossing to be replaced with new culvert during construction.

¹Existing utility easements owned by Duke Energy and Southern Belle.

9.0 Performance Standards

The stream and wetland performance standards for the project will follow approved performance criteria presented in the DMS Mitigation Plan Template, the Annual Monitoring Template (June 2017), and the Stream Mitigation Guidelines issued October 2016 by the USACE and NCIRT. Annual monitoring and routine site visits will be conducted to assess the condition of the finished project. Specific performance standard components are proposed for stream morphology, hydrology, vegetation, and wetland hydrology. Performance standards will be evaluated throughout the seven-year post-construction monitoring period.

9.1 Streams

9.1.1 Dimension

Riffle cross-sections on the restoration reaches should be stable and should show little change in bankfull area, maximum depth ratio, and width-to-depth ratio. Per DMS guidance, bank height ratios shall not exceed 1.2 and entrenchment ratios shall be at least 2.2 for restored C and E channels to be considered stable. All riffle cross-sections should fall within the parameters defined for channels of the designed stream type. If changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Short term aggradation and subsequent degradation from backwater flooding of the French Broad River will not be considered an indicator of instability or threat to channel function. In channels where some aggradation is expected, cross-sections should show maintenance of single channel characteristics and an ordinary high water mark. No maintenance of channel dimension, including the removal of sediment, will be performed after monitoring year two without coordination and/or discussion with the NCIRT. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action would not be taken if channel changes indicate a movement toward stability.

9.1.2 Pattern and Profile

Visual assessments and photo documentation should indicate that streams are remaining stable and do not indicate a trend toward vertical or lateral instability.

9.1.3 Substrate

Channel substrate materials will be sampled with the pebble count method along restoration reaches. These reaches should show maintenance of coarser materials in the riffle features and smaller particles in the pool features. A reach-wide pebble count will be performed in each restoration reach for classification purposes during monitoring years 1, 2, 3, 5 and 7. A pebble count will be performed at each surveyed riffle cross-section, only during the as-built survey to characterize the pavement. If French Broad River flooding and backwater occur, the downstream reaches could see an increase in fine sediments within the channel substate. Flood and backwater events will be noted within subsequent monitoring reports to connect changes in channel substrate with identified flood events.

9.1.4 Photo Documentation

Photographs should illustrate the Site's vegetation and morphological stability on an annual basis. Crosssection photos should demonstrate no excessive erosion or degradation of the banks. Longitudinal photos should indicate the absence of persistent of mid-channel bars or vertical incision. Grade control structures should remain stable. Deposition of sediment on the bank side of vane arms is preferable. Maintenance of scour pools on the channel side of vane arms is expected.

9.1.5 Hydrology

The occurrence of bankfull events will be documented throughout the monitoring period. Four bankfull flow events must be documented on enhancement I and restoration streams during the seven-year monitoring period. The four bankfull events must occur in separate years. Stream monitoring will continue until performance standards in the form of four bankfull events in separate years have been documented.

9.2 Vegetation

Vegetative performance for riparian buffers associated with the stream restoration component of the project (buffer widths 0 – 50ft) will be in accordance with the Stream Mitigation Guidelines issued October 2016 by the USACE and NCIRT. The success criteria is an interim survival rate of 320 planted stems per acre at the end of monitoring year three (MY3), 260 stems per acre at the end of monitoring year 5 (MY5) and a final vegetation survival rate of 210 stems per acre at the end of monitoring year 7 (MY7). Planted vegetation must average 6 feet in height in each plot at the end of year 5 (MY5) and 8 feet in height in each plot at the end of year 7 (MY7) of monitoring. Given the inundation periods anticipated for areas proposed for wetland restoration, woody vegetation growth may be hindered, resulting in stunted heights in early monitoring years. Wildlands will evaluate vigor and height of vegetation plots in wetland restoration areas on a case-by-case basis and will discuss any potential issues within annual monitoring reports." Vegetation monitoring will be conducted between July 1st and the end of the of the growing season. The extent of invasive species coverage will be monitored and controlled as necessary throughout the required monitoring period (MY7).

A combination of permanent and random vegetation plots will be used to demonstrate vegetation coverage. Both fixed and mobile plots will be chosen randomly and will include a mix of the planted vegetation communities. All woody stems, including exotic invasive species, are to be counted within each plot.

A total of 24 permanent vegetation plots will be established after construction during the as-built baseline (MYO). Permanent plots will be visually marked in the field and planted woody stems within these plots will be marked annually as needed and given a coordinate, based off a known origin, so that they can be found in subsequent monitoring years. All plots will be established as either a standard 10 meter by 10 meter plot or a 5 meter by 20 meter plot. Individual plot data will include height, density, vigor, damage (if any), planted species versus volunteer species, and survival. Mortality will be determined from the difference between the previous year's living planted stems and the current year's living planted stems.

Mobile vegetation plots will not make up more than 50% of the total required plots. In addition, 12 mobile vegetation plots will be established in different locations throughout the planted conservation easement. Locations (GPS coordinates and orientation) of the random plots will be identified and included in the corresponding monitoring year's report. Plots will be physically marked in the field so that they may be evaluated during the monitoring year. Random plot data collected will include species and height using a circular or square/rectangular 100 square meter plot.

9.3 Visual Assessments

Visual assessments should support the specific performance standards for each metric as described above.

9.4 Wetlands

Groundwater monitoring will be conducted for seven years after construction to evaluate the hydrologic state of the restored wetland areas. A total of 17 groundwater monitoring gages will be established at the Site. A majority of the wetland area contains Codorus, Toxaway, and Rosman soils, which have a hydrology performance standard ranging between 7% and 16% of the growing season according to the Wilmington District Stream and Wetland Compensatory Mitigation Update issued in October 2016 by the USACE and NCIRT. Based on the NCIRT mitigation guidance, existing Site hydrology data, and wetland hydrologic modeling; the Site's proposed performance standard for wetland hydrology shall be free groundwater surface within 12 inches of the ground surface for a minimum of 12% (26 consecutive days) of the growing season for Henderson County under normal precipitation conditions.

Growing season dates for the project area are defined as April 2st to November 1st (213 days) by the Asheville Airport, North Carolina WETS table for 50% probability of soil temperatures greater than 28 degrees Fahrenheit. However, to determine a more Site-specific growing season, soil temperature probes will be installed on-site and soil temperature data will be collected for each individual monitoring year. Per USACE guidance, soil temperature probes will be located at a depth of 12 inches. The growing season will be defined as that portion of the year where soil temperature remains above 40 degrees Fahrenheit and should be corroborated with vegetative indicators, including bud burst and leaf drop. The growing season may not begin before March 1 of each year when calculating hydroperiods. If a wetland zone does not meet the performance standard for a given monitoring year, rainfall patterns will be analyzed, and the hydrograph will be compared to that of the reference wetlands to assess whether atypical weather conditions occurred during the monitoring period.

Soil profile descriptions will be recorded at each boring where a gage is installed before and after construction. The profile descriptions will present a record of the soil horizons, color, texture, and redoximorphic features.

Groundwater data will be downloaded from installed gages on a quarterly basis and reported annually in required monitoring reports. Ground elevation at gage locations will be measured at the initial installation and verified at each subsequent download. If elevations at the installed groundwater gage locations deviates substantially from initial installation elevations, this information will be updated accordingly within the annual monitoring report.

10.0 Monitoring Plan

The Site monitoring plan has been developed to ensure that the required performance standards are met, and project goals and objectives are achieved. Annual monitoring data will be reported using the DMS Annual Monitoring Reporting Template (April 2015). The monitoring report shall provide project data chronology that will facilitate an understanding of project status and trends, ease population of DMS databases for analysis and research purposes and assist in close-out decision making.

Using the DMS As-Built Baseline Monitoring Report Template (June 2017), a baseline monitoring document and as-built record drawings of the project will be developed upon completion of the planting and monitoring installation on the restored Site. Monitoring reports will be prepared in the fall of each monitoring year and submitted to DMS by November 30. These reports will be based on the DMS Annual Monitoring Template (June 2017) and Closeout Report Template (June 2017). Full monitoring reports will be submitted to DMS in monitoring years 1, 2, 3, 5, and 7. Abbreviated monitoring reports

will be submitted in monitoring years 4 and 6. Closeout monitoring period will be seven years beyond completion of construction or until performance standards have been met. Table 18, below, describes how the monitoring plan is set up in order to verify project goals and objectives have been achieved.

Goal	Objective	Performance Standard	Monitoring Metric
Stabilize eroding stream banks.	Reconstruct stream channels slated for Restoration with stable dimensions. Add bank revetments and in-stream structures to reaches to protect restored/enhanced streams.	Cross-sections should be stable and show little change in bankfull area, and width-to- depth ratio.	Cross-section monitoring and visual inspections.
Improve the stability of stream channels.	Construct stream channels that will maintain a stable pattern and profile considering the hydrologic and sediment inputs to the system, the landscape setting, and the watershed conditions.	Entrenchment ratio stays over 2.2 and bank height ratio below 1.2 with visual assessments showing progression towards stability.	Cross-section monitoring and visual inspections.
Improve instream habitat.	Install habitat features such as constructed riffles, cover logs, and brush toes into restored/enhanced streams. Add woody materials to channel beds. Construct pools of varying depth.	There is no required performance standard for this metric.	N/A
Reconnect channels with floodplains and riparian wetlands.	Reconstruct stream channels with appropriate bankfull dimensions and depth relative to the existing floodplain.	Four bankfull events in separate years within monitoring period.	Crest gages with transducers recording flow elevations.
Restore wetland hydrology, soils, and plant communities.	Restore and enhance riparian wetlands by raising stream beds, plugging existing ditches, removing berm material over relic hydric soils, and planting native wetland species.	Free groundwater surface within 12 inches of the ground surface for 12% of the growing season.	Groundwater gages will be placed in wetland re- establishment and rehabilitation areas and monitored annually.
Restore and enhance native floodplain vegetation.	Plant native tree species in riparian zone where currently insufficient.	Survival rate of 320 stems per acre at MY3, 260 planted stems per acre at MY5, and 210 stems per acre at MY7. Average height of 6 feet in each plot at MY5 and 8 feet in each plot at MY7 for planted stems.	One hundred square meter vegetation plots will be placed on 2% of the planted area of the project and monitored annually.
Permanently protect the project Site from harmful uses.	Establish conservation easements on the Site.	Prevent easement encroachment.	Visually inspect the perimeter of the Site to ensure no easement encroachment is occurring.

Table 18: Monitoring Plan

10.1 Monitoring Components

Project monitoring components are listed in more detail in Table 19. Approximate locations of the proposed vegetation plots, cross-sections, and groundwater gage monitoring components are illustrated in Figure 11.

			Quantity/Length by Reach							
Parameter	Monitoring Feature	Banner Reach 1	Banner Reach 2	Banner Reach 3	Banner Reach 4a	Banner Reach 4b	UT1	UT2	Frequency	Notes
Dimension	Riffle Cross- sections	2	2	1	1	1	1	3	Year 1, 2, 3,	1
Dimension	Pool Cross- sections	2	1	1	1	0	1	3	5, and 7	Ť
Pattern	Pattern	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Profile	Longitudinal Profile	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2
Substrate	Reach wide (RW) Pebble Count	1	1	1	1	1	1	1	Year 1, 2, 3, 5, and 7	3
Hydrology	Crest Gage (CG)		1 CG 1 CG 1 CG						Semi- Annual	4
Vegetation	CVS Level 2/Mobile Plots		36 Total (24 Permanent, 12 Mobile)						Year 1, 2, 3, 5, and 7	5
Wetland	Groundwater Gages				18				Quarterly	
Visual Assessment		Y	Y	Y	Y	Y	Y	Y	Semi- Annual	
Exotic and nuisance vegetation									Semi- Annual	6
Project Boundary									Semi- Annual	7
Reference Photos	Photographs		22					Annual		

Table 19: Monitoring Components

1. Cross-sections will be permanently marked with rebar to establish location. Surveys will include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg.

2. Pattern and profile will be assessed visually during semi-annual site visits. Longitudinal profile will be collected during as-built baseline monitoring survey only, unless observations indicate widespread lack of vertical stability (greater than 10% of reach is affected) and profile survey is warranted in additional years to monitor adjustments or survey repair work.

3. Riffle 100-count substrate sampling will be collected during the baseline monitoring only. Substrate assessments in subsequent monitoring years will consist of reachwide substrate monitoring.

4. Crest gages will be inspected quarterly or semi-annually, evidence of bankfull events will be documented with a photo when possible. The transducer will be inspected and downloaded semi-annually.

5. Both mobile and permanent vegetation plots will be utilized to evaluate the vegetation performance for the open areas planted. 2% of the open and wetland planted acreage will be monitored with permanent plots and mobile plots. Permanent vegetation monitoring plot assessments will follow CVS Level 2 protocols. Mobile vegetation monitoring plot assessments will document number of planted stems and species using a circular or 100 m2 square/rectangular plot. Planted shaded areas will be visually assessed. Number indicates total number of plots for the entire site.

6. Locations of exotic nuisance vegetation, vegetation damage, boundary encroachments etc. will be mapped.

11.0 Long-Term Management Plan

The Site will be transferred to the North Carolina Department of Environmental Quality (NCDEQ) Stewardship Program. This party shall serve as conservation easement holder and long-term steward for the property and will conduct annual inspection of the Site to ensure that restrictions required in the conservation easement are upheld. The NCDEQ Stewardship Program is developing an endowment system within the non-reverting, interest-bearing Conservation Lands Conservation Fund Account. The use of funds from the Endowment Account will be governed by North Carolina General Statue GS 113A-232(d)(3). Interest gained by the endowment fund may be used for the purpose of stewardship, monitoring, stewardship administration, and land transaction costs, if applicable.

The Site Protection Instrument can be found in Appendix 1. Activities included in the long-term management plan are included in Table 20.

Long-Term Management Activity	Long-Term Manager Responsibility	Landowner Responsibility		
Signage will be installed and maintained along the Site boundary to denote the area protected by the recorded conservation easement.	The long-term steward will be responsible for inspecting the Site boundary and for maintaining or replacing signage to ensure that the conservation easement area is clearly marked.	The landowner shall report damaged or missing signs to the long-term manager, as well as contact the long-term manager if a boundary needs to be marked, or clarification is needed regarding a boundary location. If land use changes in future and fencing is required to protect the easement, the landowner is responsible for installing fencing that meets the objectives of the mitigation project.		
The Site will be protected in its entirety and managed under the terms outlined in the recorded conservation easement.	The long-term manager will be responsible for conducting annual inspections and for undertaking actions that are reasonably calculated to swiftly correct the conditions constituting a breach. The USACE, and their authorized agents, shall have the right to enter and inspect the Site and to take actions necessary to verify compliance with the conservation easement.	The landowner shall contact the long-term manager if clarification is needed regarding the restrictions associated with the recorded conservation easement.		

Table 20: Long-term Management Plan

12.0 Adaptive Management Plan

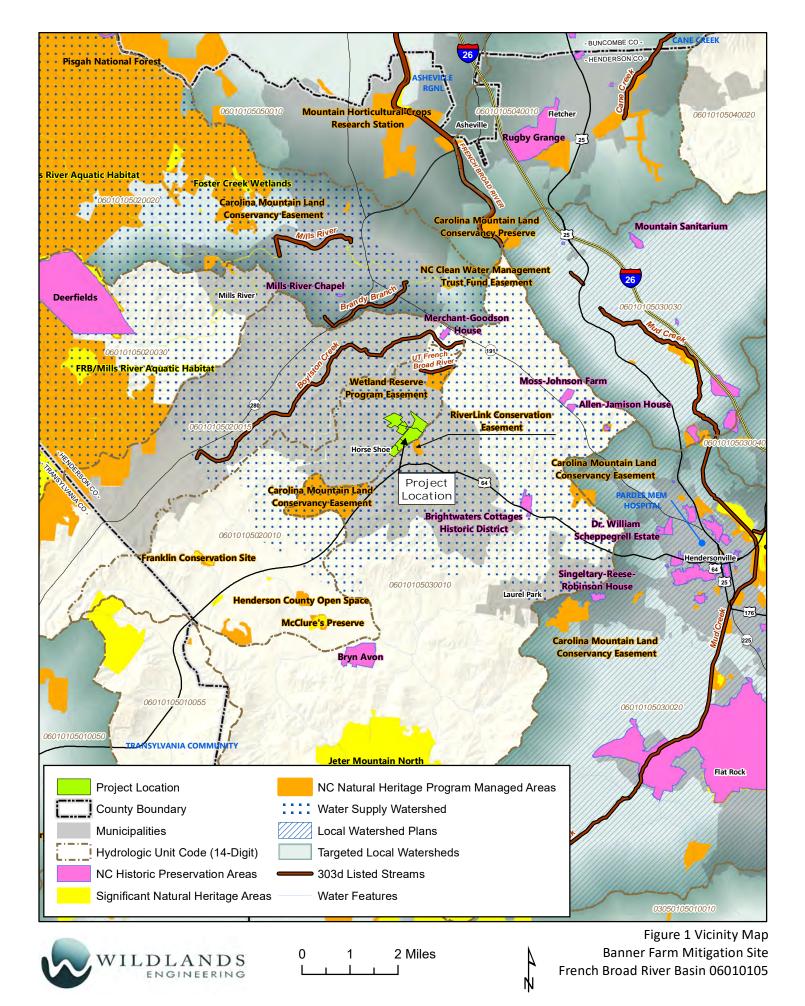
Upon completion of Site construction, Wildlands will implement the post-construction monitoring defined in Sections 9 and 10. Project maintenance will be performed during the monitoring years to address minor issues as necessary (Appendix 10). If, during the course of annual monitoring it is determined the Site's ability to achieve Site performance standards are jeopardized, Wildlands will notify the DMS of the need to develop a Plan of Corrective Action. Once the Plan of Corrective Action is prepared and finalized Wildlands will:

- Notify the USACE as required by the Nationwide 27 permit general conditions;
- Revise performance standards, maintenance requirements, and monitoring requirements as necessary and/or required by the USACE;
- Obtain other permits as necessary;
- Implement the Corrective Action Plan; and
- Provide the USACE a Record Drawing of Corrective Actions. This document shall depict the extent and nature of the work performed.

13.0 Determination of Credits

The final stream credits associated with the Site are listed in Table 21. Stream restoration is at a ratio of 1:1. Wetland re-establishment and rehabilitation are at a ratio of 1:1 and 2:1, respectively. Wetland creation is at a ratio of 3:1. The credit release schedule is located in Appendix 11.

	Existing Footage	Mitigation Plan							
	or	Footage or	Mitigatio	n Restorat	ion	Priori	itv	Mit	tigation
Project Segment	Acreage	Acreage	Category			Leve	•		io (X:1)
Banner Creek Reach 1	705	797	Cool	R		PI/I	I	1.	00000
Banner Creek Reach 2	945	866	Cool	R		PI/I	I	1.	00000
Banner Creek Reach 3	357	467	Cool	R		PI/I	I	1.	00000
Banner Creek Reach 4a	607	794	Cool	R		PI/I	I	1.	00000
Banner Creek Reach 4b	802	420	Cool	R		PII		1.	00000
UT1	620	1,071	Cool	R		PI/I	Ι	1.	00000
UT2	2,042	1,879	Cool	R		PI/I	I	1.	00000
				-					
Wetland Re-Establishment	0.000	31.820	RR	RE				1.	00000
Wetland Rehabilitation	2.760	2.760	RR	RH				2.	00000
Wetland Creation	0.000	1.140	RR	С				3.	00000
		Stream		Riparian V	Wetl	and	No	on-Rip	Coastal
Restoration Level	Warm	Cool	Cold	Riverine	No	on-Riv	W	etland	Marsh
Restoration		6294.000							
Re-establishment				31.820					
Rehabilitation				1.380					
Enhancement									
Enhancement I									
Enhancement II									
Creation				0.380					
Preservation									
Totals		6294.000		33.580					

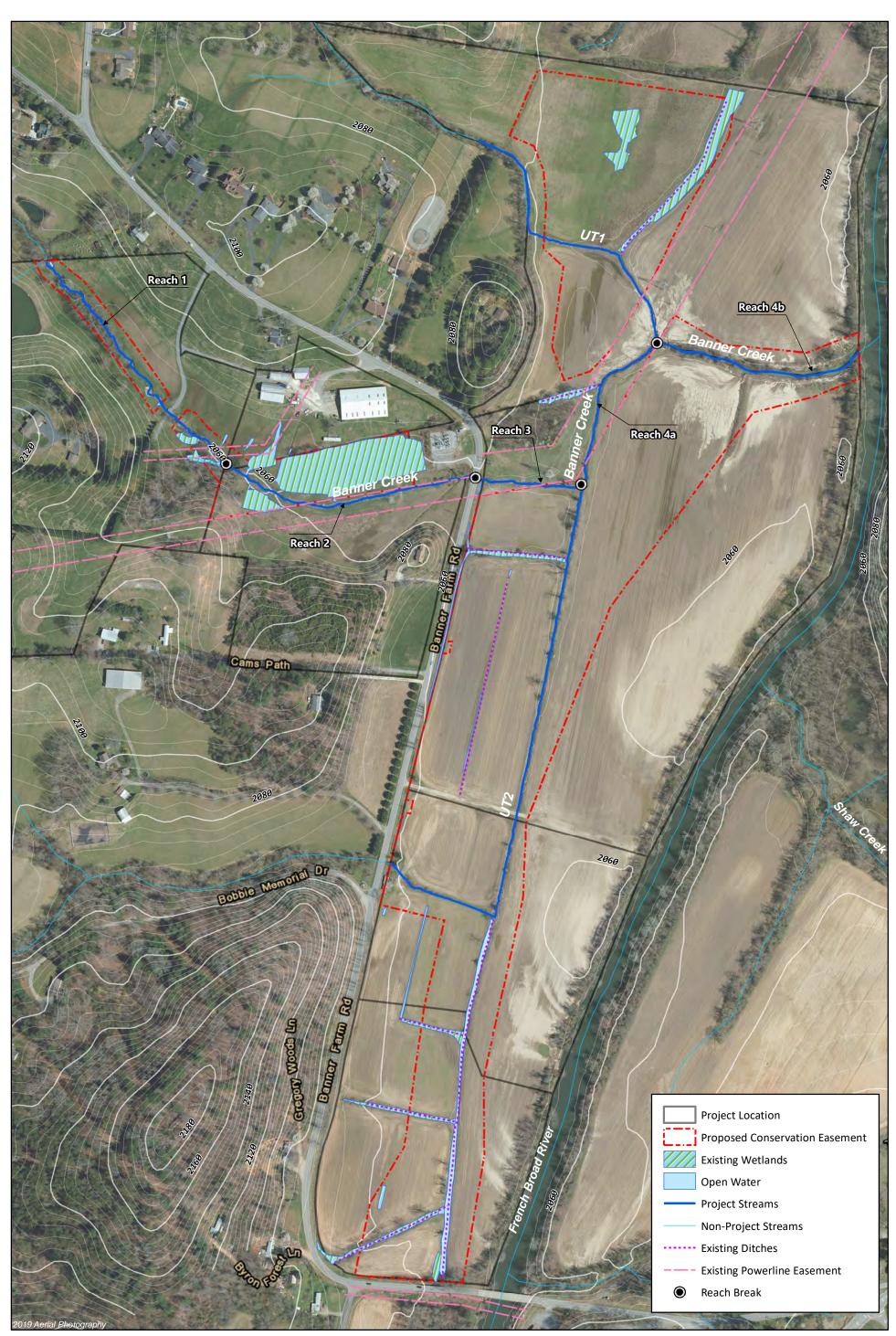

14.0 References

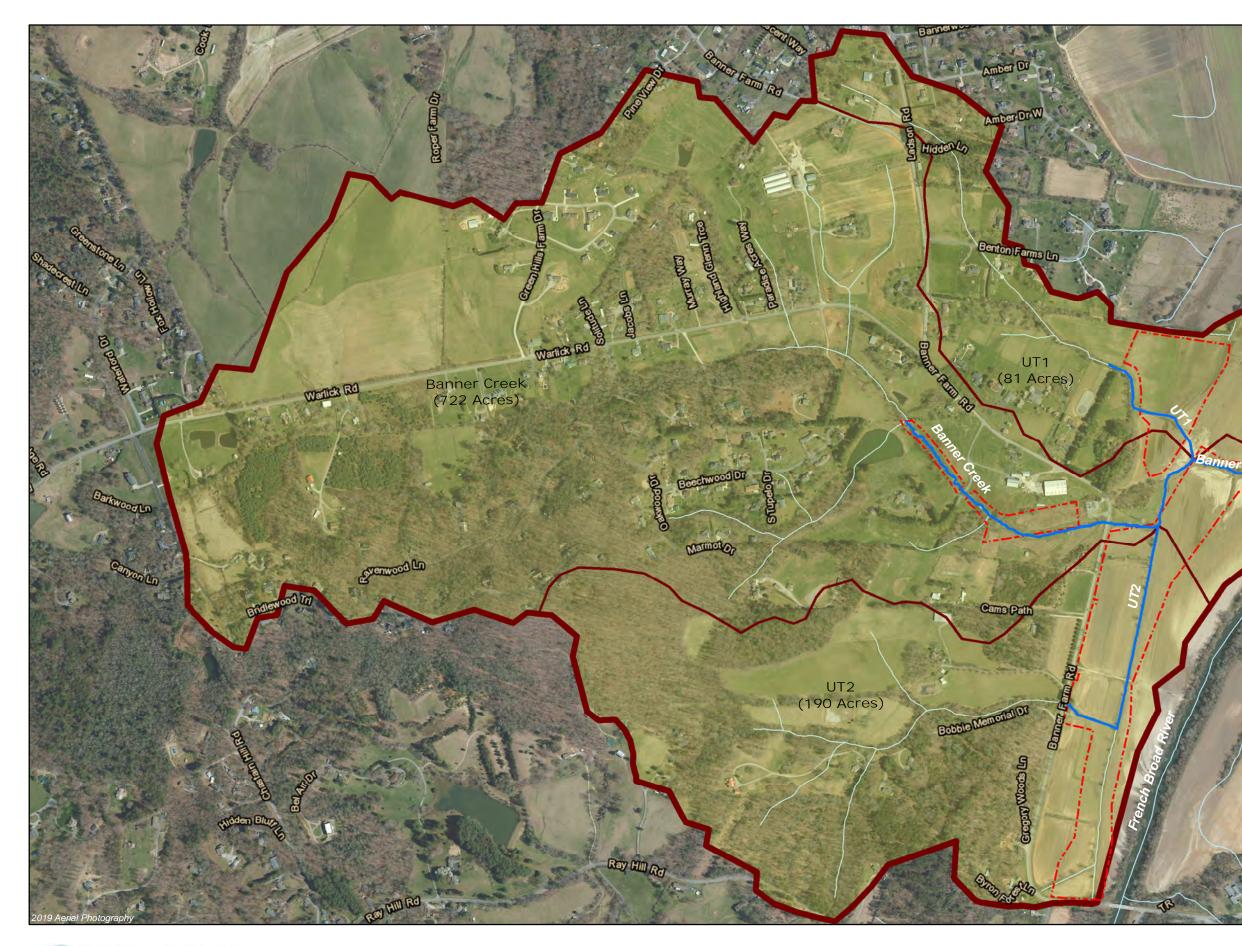
- Barnhill, W.L., Goodwin, R.A. Jr., Bostian, M.R., McLoda, N.A., Leishman, G.W., and Scanu, R.J., 1974. Soil Survey of Wayne County, North Carolina. United States Department of Agriculture Natural Resources Conservation Service, Washington, D.C.
- Doll, B.A., Dobbins, A.D., Spooner, J., Clinton, D.R, and Bidelspach, D.A., 2003. Hydraulic Geometry Relationships for the Rural North Carolina Coastal Plain.
- Dunne, T. and L. B. Leopold. 1978. Water in Environmental Planning. W.H. Freeman and Company. New York.
- Giese, G.I and Robert R. Mason Jr. 1993. Low-Flow Characteristics of Streams in North Carolina. U.S. Geological Survey Water Supply Paper 2403.
- Harman, W. R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs, C. Miller. 2012. A Function Based Framework for Stream Assessment and Restoration Projects. US Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, DC EPA 843-K-12-006.
- Harman et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. AWRA Wildland Hydrology Symposium Proceedings. Edited by: D. S. Olsen and J.P. Potyondy. AWRA Summer Symposium. Bozeman, MT.
- Natural Resources Conservation Service (NRCS), 2011. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm
- North Carolina Division of Water Quality (NCDWQ), 2011. Surface Water Classifications. http://portal.ncdenr.org/web/wq/ps/csu/classifications
- North Carolina Geological Survey (NCGS), 1985. Geologic map of North Carolina 1:500,000 scale. Compiled by Philip M. Brown at el. Raleigh, NC, NCGS.
- North Carolina Natural Heritage Program (NHP), 2009. Natural Heritage Element Occurrence Database, Henderson County, NC.
- Rosgen, D. L. 1994. A classification of natural rivers. *Catena* 22:169-199.
- Rosgen, D.L. 2001. A stream channel stability assessment methodology. Proceedings of the Federal Interagency Sediment Conference, Reno, NV, March 2001.
- Simon, A. 1989. A model of channel response in disturbed alluvial channels. Earth Surface Processes and Landforms 14(1):11-26.
- Shields, D. F., Copeland, R. R, Klingman, P. C., Doyle, M. W., and Simon, A. 2003. Design for Stream Restoration. Journal of Hydraulic Engineering 129(8): 575-582.
- U.S. Army Corps of Engineers. 2005. Technical Standard for Water-Table Monitoring of Potential Wetland Sites. *WRAP Technical Notes Collection* (ERDC TN-WRAP-05-02), U.S. Army Engineer Research and Development Center, Vicksburg, MS.
- U.S. Army Corps of Engineers, Hydrologic Engineering Center (HEC), 2010. HEC-RAS River Analysis System User's Manual, Version 4.1. Accessed online at: <u>http://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_4.1_Users_Manual.pdf</u>
- United States Fish and Wildlife Service (USFWS), 2014. Endangered Species, Threatened Species, Federal Species of Concern and Candidate Species, Henderson County, NC.

Walker, Alan, unpublished. NC Rural Mountain and Piedmont Regional Curve.

FIGURES

Henderson County, NC




Figure 2 Site Map Banner Farm Mitigation Site French Broad River Basin 06010105

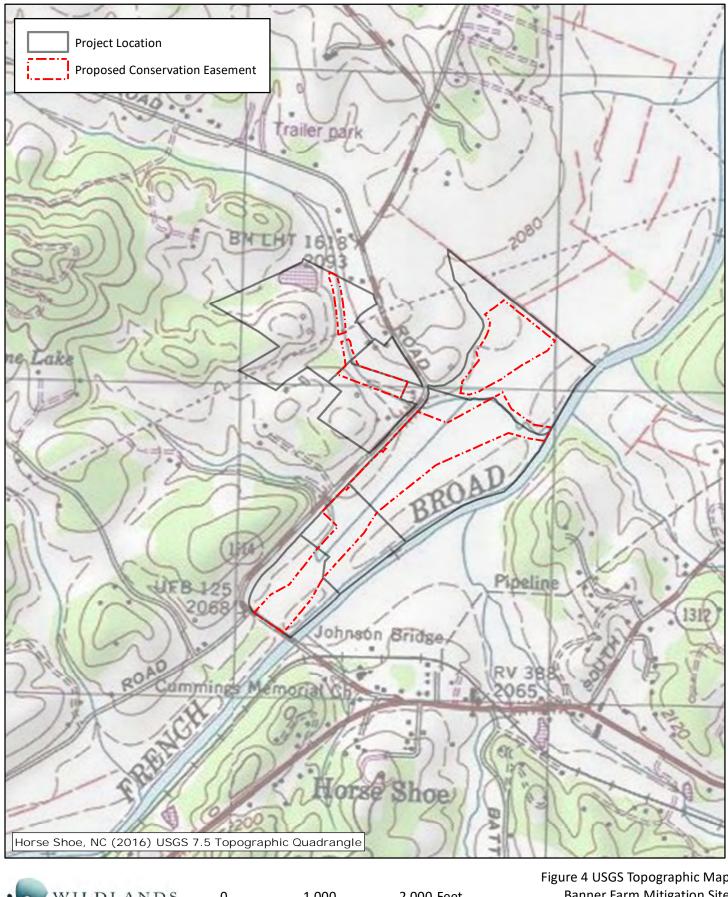
0	300)	600 Feet
	1 1	1	

A H

Henderson County, NC

700 0 1,400 Feet

1


Proposed Conservation Easement Watershed Boundary Subwatersheds

- Project Streams
- Non Project Streams

Figure 3 Watershed Map Banner Farm Mitigation Site French Broad River Basin 06010105

Henderson County, NC

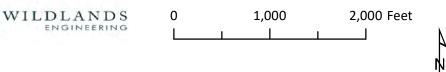


Figure 4 USGS Topographic Map Banner Farm Mitigation Site French Broad River Basin 06010105

Δ

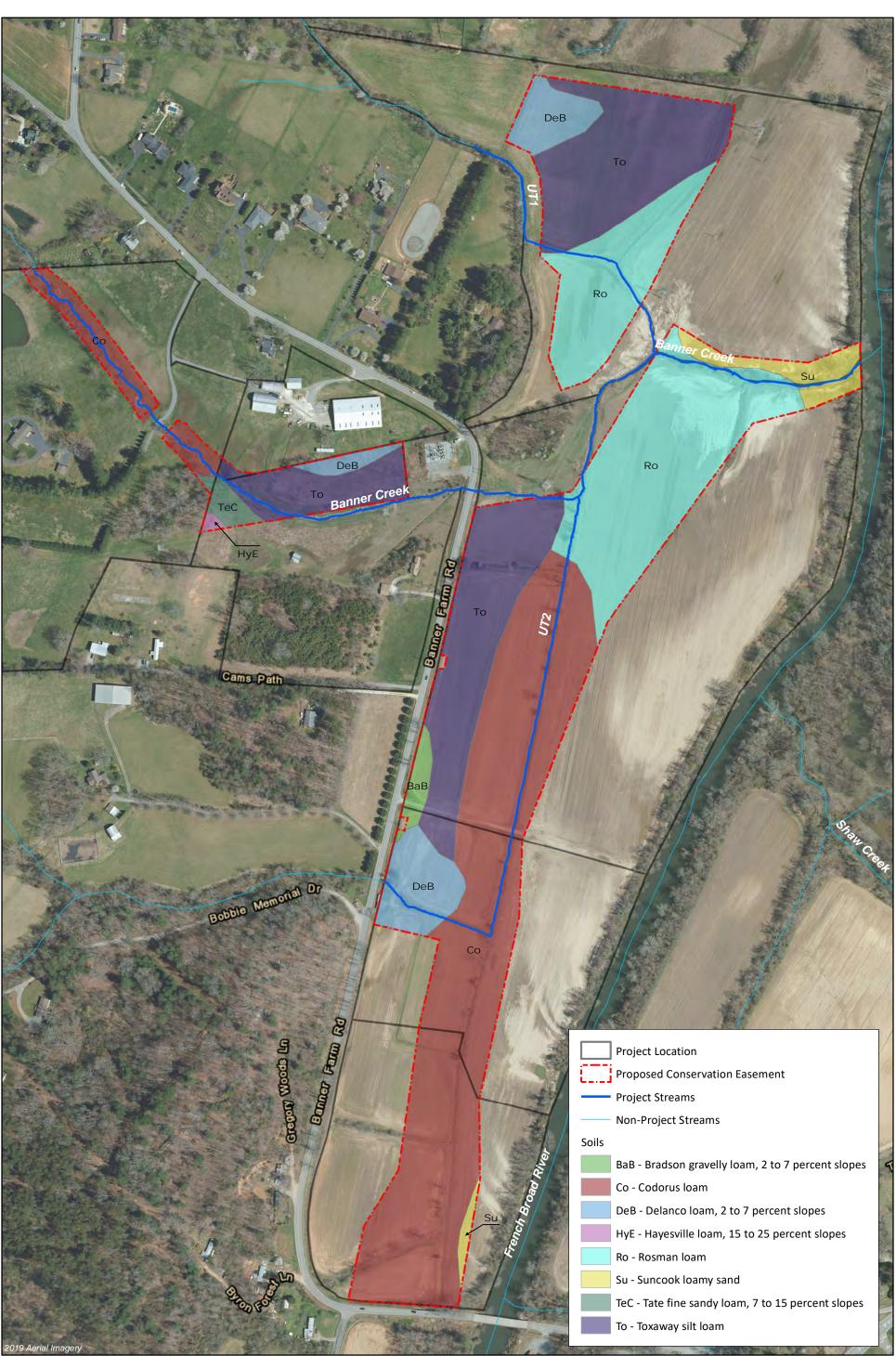
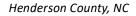



Figure 5 Soils Map Banner Farm Mitigation Site French Broad River Basin 06010105

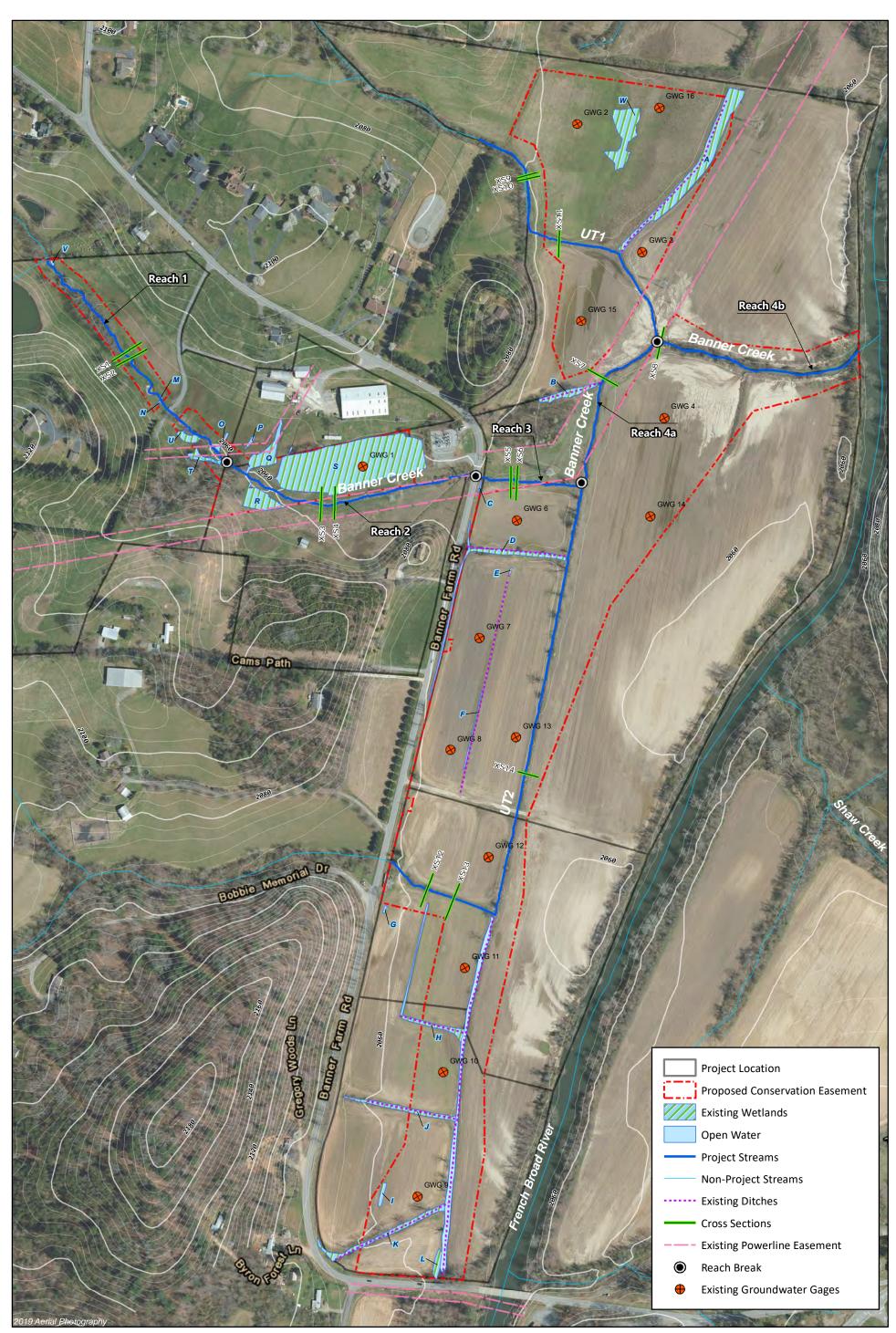
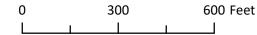
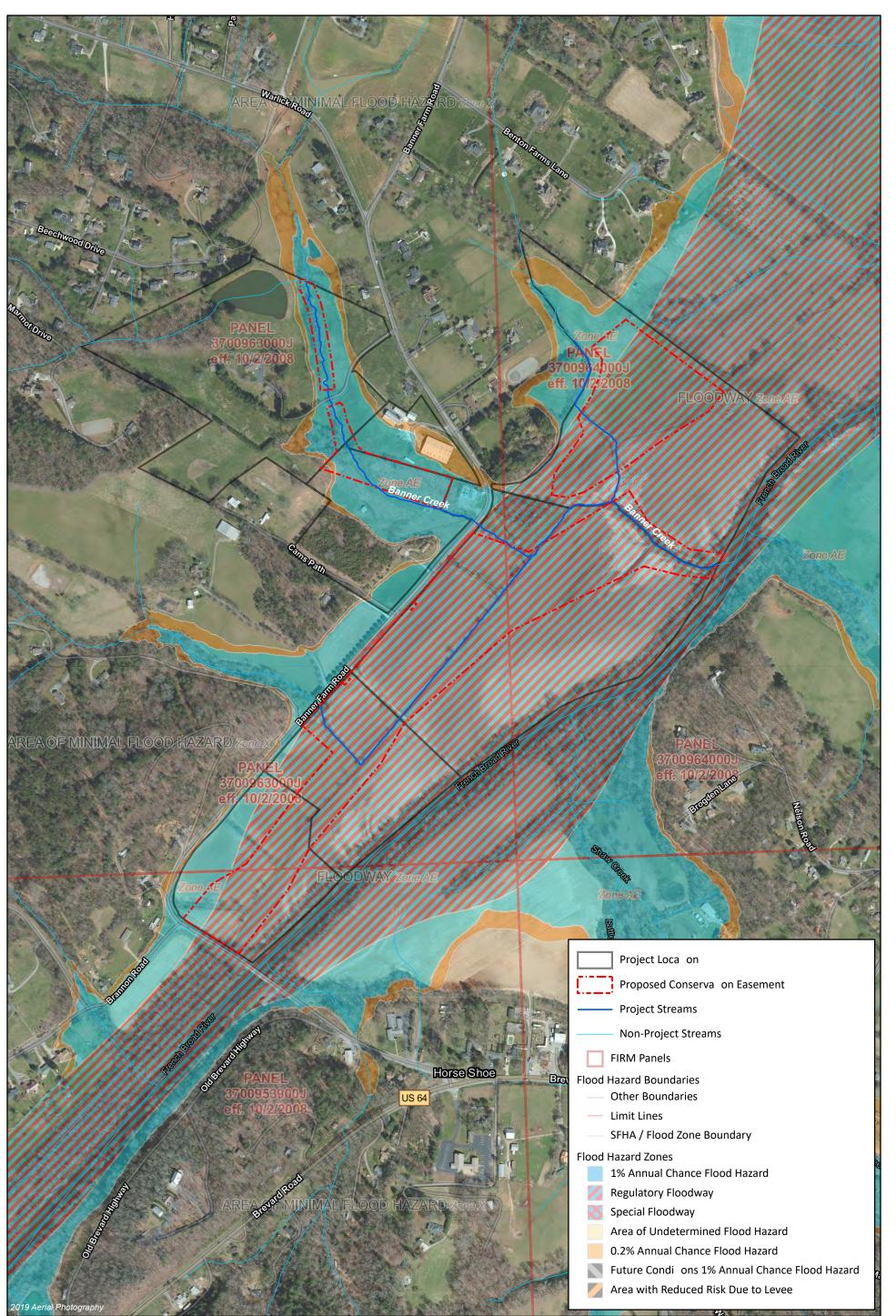
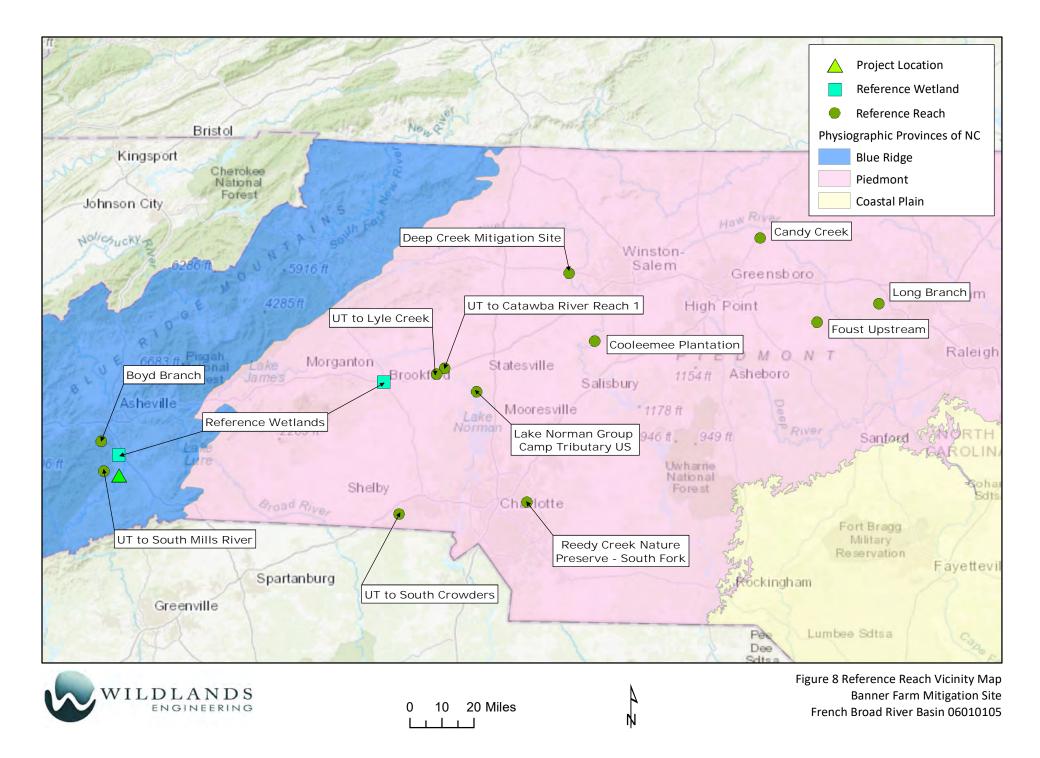
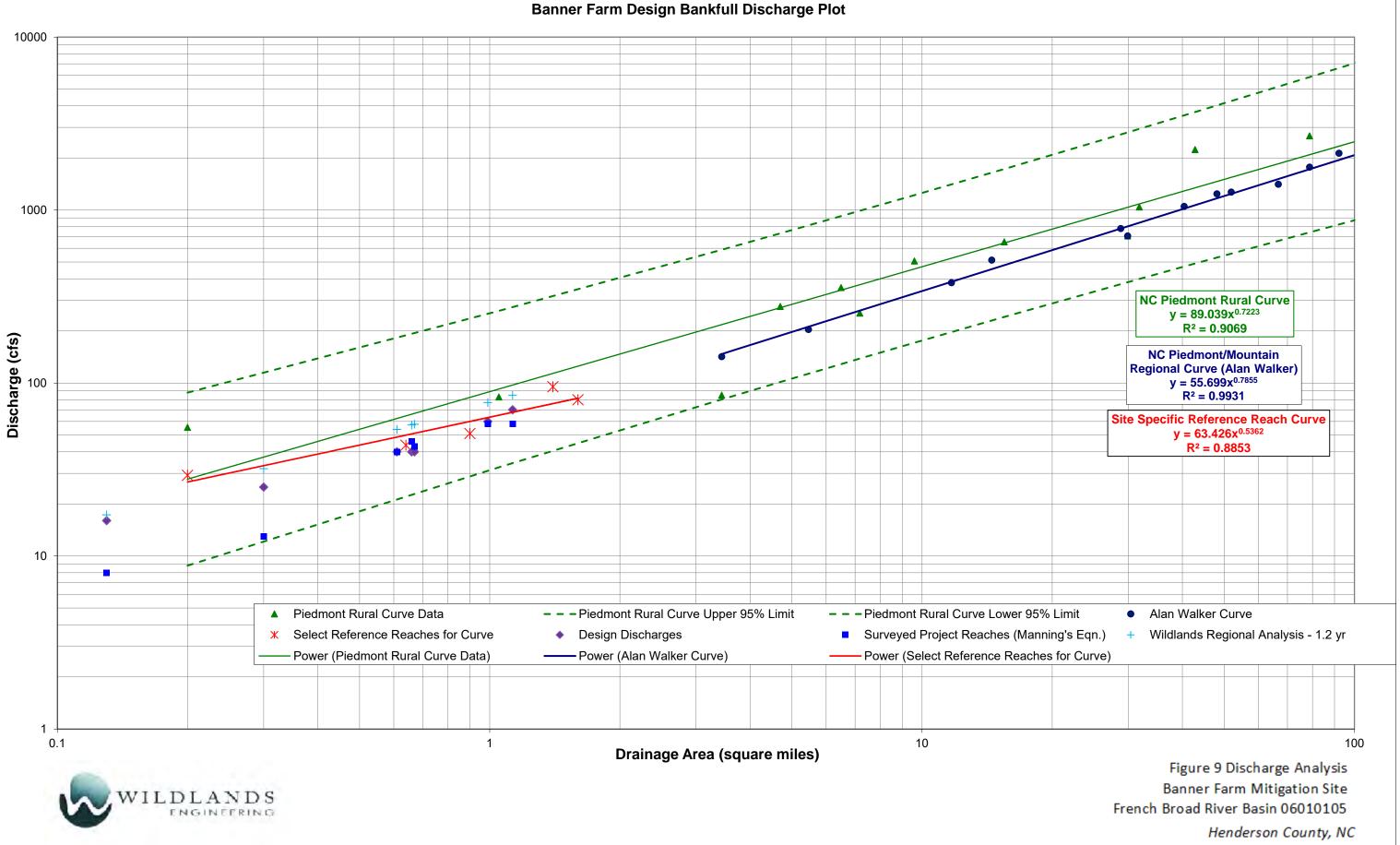



Figure 6 Existing Conditions Map Banner Farm Mitigation Site French Broad River Basin 06010105

Henderson County, NC




Figure 7 FEMA Floodplain Map Banner Farm Mi ga on Site French Broad River Basin 06010105


Henderson County, NC

0	600	1,200 Fee

et

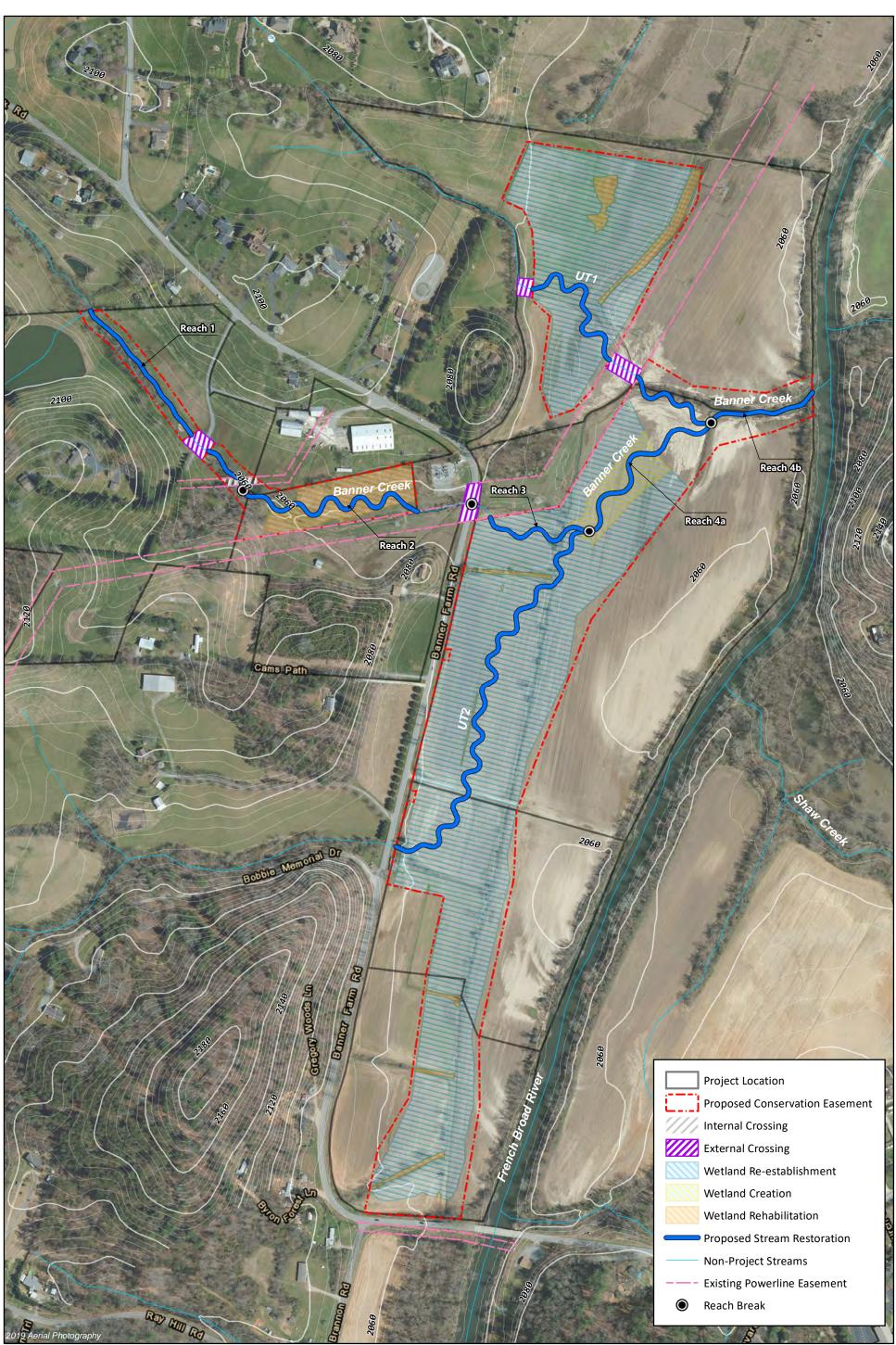


Figure 10 Concept Map Banner Farm Mitigation Site French Broad River Basin 06010105

0		300		600 Feet
1	I.	1	1	1

Henderson County, NC

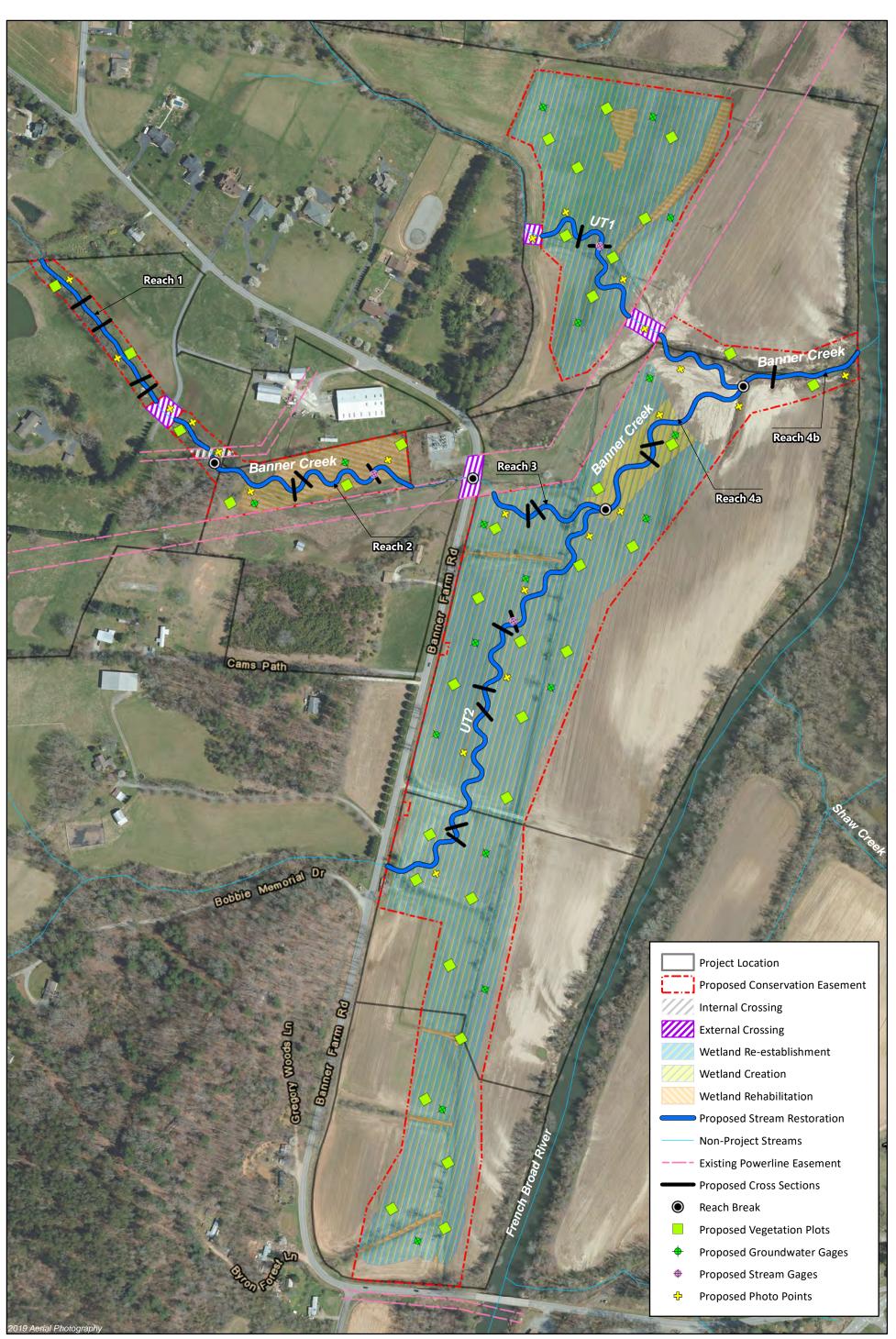
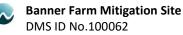


Figure 11 Monitoring Components Map Banner Farm Mitigation Site French Broad River Basin 06010105

0	300	0	600 Feet	
	1 1			

Henderson County, NC


APPENDIX 1 Site Protection Instrument

Appendix 1 Site Protection Instrument

The land required for construction, management, and stewardship of this mitigation project includes portions of the parcels listed in Table 1. All parcels are optioned for purchase by Wildlands Engineering, Inc. (Wildlands). Upon transfer of lands to Wildlands, a conservation easement will be recorded on the parcels and includes streams and wetlands being restored along with their corresponding riparian buffers.

Current Landowner	PIN	County	Under Option to Purchase by Wildlands?	Memorandum of Option Conservation Easement Deed Book (DB) and Page Number (PG)	Acreage to be Protected
Mitchell & Wendy Gaither	9630826726	Henderson	Yes	DB: 1598 PG: 219	1.62 Ac
Mountain Bean Land, LLC	9630924395	Henderson	Yes	DB: 3388 PG: 494	0.09 Ac
Vine Ripe Rentals, LLC.	9630912884	Henderson	Yes	DB: 3388 PG: 488	2.68 Ac
Kirby & Sherri Johnson	9630919204	Henderson	Yes	DB: 831 PG: 23	18.84 Ac
Mountain Bean Land, LLC	9640028341	Henderson	Yes	DB: 3388 PG: 494	11.39 Ac
Kirby & Sherry Johnson	9630900480	Henderson	Yes	DB: 3403 PG: 159	6.08 Ac
Kirby & Sherry Johnson	9539895929	Henderson	Yes	DB: 1426 PG: 625 & DB: 1479 PG: 642	5.9 Ac

The conservation easement template that will be used for recordation is included in this appendix. All site protection instruments require 60-day advance notification to the USACE and or DMS prior to any action to void, amend, or modify the document. No such action shall take place unless approved by the State.

STATE OF NORTH CAROLINA

DEED OF CONSERVATION EASEMENT AND RIGHT OF ACCESS PROVIDED PURSUANT TO FULL DELIVERY MITIGATION CONTRACT

COUNTY

SPO File Number: DMS Project Number:

Prepared by: Office of the Attorney General Property Control Section Return to: NC Department of Administration State Property Office 1321 Mail Service Center Raleigh, NC 27699-1321

THIS DEED OF CONSERVATION EASEMENT AND RIGHT OF ACCESS, made this _______ day of ______, 20__, by ______ *Landowner name goes here* , ("Grantor"), whose mailing address is ______ *Landowner address goes here*______, to the State of North Carolina, ("Grantee"), whose mailing address is State of North Carolina, Department of Administration, State Property Office, 1321 Mail Service Center, Raleigh, NC 27699-1321. The designations of Grantor and Grantee as used herein shall include said parties, their heirs, successors, and assigns, and shall include singular, plural, masculine, feminine, or neuter as required by context.

WITNESSETH:

WHEREAS, pursuant to the provisions of N.C. Gen. Stat. § 143-214.8 <u>et seq.</u>, the State of North Carolina has established the Division of Mitigation Services (formerly known as the Ecosystem Enhancement Program and Wetlands Restoration Program) within the Department of Environment and Natural Resources for the purposes of acquiring, maintaining, restoring, enhancing, creating and preserving wetland and riparian resources that contribute to the

protection and improvement of water quality, flood prevention, fisheries, aquatic habitat, wildlife habitat, and recreational opportunities; and

WHEREAS, this Conservation Easement from Grantor to Grantee has been negotiated, arranged and provided for as a condition of a full delivery contract between (<u>insert name and address of full delivery contract provider</u>) and the North Carolina Department of Environment and Natural Resources, to provide stream, wetland and/or buffer mitigation pursuant to the North Carolina Department of Environment and Natural Resources Purchase and Services Contract Number _____.

WHEREAS, The State of North Carolina is qualified to be the Grantee of a Conservation Easement pursuant to N.C. Gen. Stat. § 121-35; and

WHEREAS, the Department of Environment and Natural Resources and the United States Army Corps of Engineers, Wilmington District entered into a Memorandum of Understanding, (MOU) duly executed by all parties on November 4, 1998. This MOU recognized that the Wetlands Restoration Program was to provide effective compensatory mitigation for authorized impacts to wetlands, streams and other aquatic resources by restoring, enhancing and preserving the wetland and riparian areas of the State; and

WHEREAS, the Department of Environment and Natural Resources, the North Carolina Department of Transportation and the United States Army Corps of Engineers, Wilmington District entered into a Memorandum of Agreement, (MOA) duly executed by all parties in Greensboro, NC on July 22, 2003, which recognizes that the Division of Mitigation Services (formerly Ecosystem Enhancement Program) is to provide for compensatory mitigation by effective protection of the land, water and natural resources of the State by restoring, enhancing and preserving ecosystem functions; and

WHEREAS, the Department of Environment and Natural Resources, the U.S. Army Corps of Engineers, the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service, the North Carolina Wildlife Resources Commission, the North Carolina Division of Water Quality, the North Carolina Division of Coastal Management, and the National Marine Fisheries Service entered into an agreement to continue the In-Lieu Fee operations of the North Carolina Department of Natural Resources' Division of Mitigation Services (formerly Ecosystem Enhancement Program) with an effective date of 28 July, 2010, which supersedes and replaces the previously effective MOA and MOU referenced above; and

WHEREAS, the acceptance of this instrument for and on behalf of the State of North Carolina was granted to the Department of Administration by resolution as approved by the Governor and Council of State adopted at a meeting held in the City of Raleigh, North Carolina, on the 8th day of February 2000; and

WHEREAS, the Division of Mitigation Services in the Department of Environment and Natural Resources, which has been delegated the authority authorized by the Governor and Council of State to the Department of Administration, has approved acceptance of this instrument; and WHEREAS, Grantor owns in fee simple certain real property situated, lying, and being in _____ Township, _____ County, North Carolina (the "Property"), and being more particularly described as that certain parcel of land containing approximately _____ acres and being conveyed to the Grantor by deed as recorded in Deed Book _____ at Page _____ of the _____ County Registry, North Carolina; and

WHEREAS, Grantor is willing to grant a Conservation Easement and Right of Access over the herein described areas of the Property, thereby restricting and limiting the use of the areas of the Property subject to the Conservation Easement to the terms and conditions and purposes hereinafter set forth, and Grantee is willing to accept said Easement and Access Rights. The Conservation Easement shall be for the protection and benefit of the waters of <u>if known</u>, *insert name of stream, branch, river or waterway here*.

NOW, THEREFORE, in consideration of the mutual covenants, terms, conditions, and restrictions hereinafter set forth, Grantor unconditionally and irrevocably hereby grants and conveys unto Grantee, its successors and assigns, forever and in perpetuity, a Conservation Easement along with a general Right of Access.

The Conservation Easement Area consists of the following:

Tracts Number	containing a total of	acres as shown on the plats
of survey entitled "Final	Plat, Conservation Easement for	or North Carolina Division of Mitigation
Services, Project Name:	, SPO File No	, EEP Site No,
Property of	," dated	, 20 by <u>name of surveyor,</u>
PLS Number	_ and recorded in the	County, North Carolina Register
of Deeds at Plat Book	Pages	

See attached "**Exhibit A**", Legal Description of area of the Property hereinafter referred to as the "Conservation Easement Area"

The purposes of this Conservation Easement are to maintain, restore, enhance, construct, create and preserve wetland and/or riparian resources in the Conservation Easement Area that contribute to the protection and improvement of water quality, flood prevention, fisheries, aquatic habitat, wildlife habitat, and recreational opportunities; to maintain permanently the Conservation Easement Area in its natural condition, consistent with these purposes; and to prevent any use of the Easement Area that will significantly impair or interfere with these purposes. To achieve these purposes, the following conditions and restrictions are set forth:

I. DURATION OF EASEMENT

Pursuant to law, including the above referenced statutes, this Conservation Easement and Right of Access shall be perpetual and it shall run with, and be a continuing restriction upon the use of, the Property, and it shall be enforceable by the Grantee against the Grantor and against Grantor's heirs, successors and assigns, personal representatives, agents, lessees, and licensees.

II. GRANTOR RESERVED USES AND RESTRICTED ACTIVITIES

The Conservation Easement Area shall be restricted from any development or usage that would impair or interfere with the purposes of this Conservation Easement. Unless expressly reserved as a compatible use herein, any activity in, or use of, the Conservation Easement Area by the Grantor is prohibited as inconsistent with the purposes of this Conservation Easement. Any rights not expressly reserved hereunder by the Grantor have been acquired by the Grantee. Any rights not expressly reserved hereunder by the Grantor, including the rights to all mitigation credits, including, but not limited to, stream, wetland, and riparian buffer mitigation units, derived from each site within the area of the Conservation Easement, are conveyed to and belong to the Grantee. Without limiting the generality of the foregoing, the following specific uses are prohibited, restricted, or reserved as indicated:

A. Recreational Uses. Grantor expressly reserves the right to undeveloped recreational uses, including hiking, bird watching, hunting and fishing, and access to the Conservation Easement Area for the purposes thereof.

B. Motorized Vehicle Use. Motorized vehicle use in the Conservation Easement Area is prohibited except within a Crossing Area(s) or Road or Trail as shown on the recorded survey plat.

C. Educational Uses. The Grantor reserves the right to engage in and permit others to engage in educational uses in the Conservation Easement Area not inconsistent with this Conservation Easement, and the right of access to the Conservation Easement Area for such purposes including organized educational activities such as site visits and observations. Educational uses of the property shall not alter vegetation, hydrology or topography of the site.

D. **Damage to Vegetation.** Except within Crossing Area(s) as shown on the recorded survey plat and as related to the removal of non-native plants, diseased or damaged trees, or vegetation that destabilizes or renders unsafe the Conservation Easement Area to persons or natural habitat, all cutting, removal, mowing, harming, or destruction of any trees and vegetation in the Conservation Easement Area is prohibited.

E. Industrial, Residential and Commercial Uses. All industrial, residential and commercial uses are prohibited in the Conservation Easement Area.

F. Agricultural Use. All agricultural uses are prohibited within the Conservation Easement Area including any use for cropland, waste lagoons, or pastureland.

G. New Construction. There shall be no building, facility, mobile home, antenna, utility pole, tower, or other structure constructed or placed in the Conservation Easement Area.

H. **Roads and Trails.** There shall be no construction or maintenance of new roads, trails, walkways, or paving in the Conservation Easement.

All existing roads, trails and crossings within the Conservation Easement Area shall be shown on the recorded survey plat.

I. Signs. No signs shall be permitted in the Conservation Easement Area except interpretive signs describing restoration activities and the conservation values of the Conservation Easement Area, signs identifying the owner of the Property and the holder of the Conservation Easement, signs giving directions, or signs prescribing rules and regulations for the use of the Conservation Easement Area.

J. Dumping or Storing. Dumping or storage of soil, trash, ashes, garbage, waste, abandoned vehicles, appliances, machinery, or any other material in the Conservation Easement Area is prohibited.

K. Grading, Mineral Use, Excavation, Dredging. There shall be no grading, filling, excavation, dredging, mining, drilling, hydraulic fracturing; removal of topsoil, sand, gravel, rock, peat, minerals, or other materials.

L. Water Quality and Drainage Patterns. There shall be no diking, draining, dredging, channeling, filling, leveling, pumping, impounding or diverting, causing, allowing or permitting the diversion of surface or underground water in the Conservation Easement Area. No altering or tampering with water control structures or devices, or disruption or alteration of the restored, enhanced, or created drainage patterns is allowed. All removal of wetlands, polluting or discharging into waters, springs, seeps, or wetlands, or use of pesticide or biocides in the Conservation Easement Area is prohibited. In the event of an emergency interruption or shortage of all other water sources, water from within the Conservation Easement Area may temporarily be withdrawn for good cause shown as needed for the survival of livestock on the Property.

M. Subdivision and Conveyance. Grantor voluntarily agrees that no further subdivision, partitioning, or dividing of the Conservation Easement Area portion of the Property owned by the Grantor in fee simple ("fee") that is subject to this Conservation Easement is allowed. Any future transfer of the Property shall be subject to this Conservation Easement and Right of Access and to the Grantee's right of unlimited and repeated ingress and egress over and across the Property to the Conservation Easement Area for the purposes set forth herein.

N. Development Rights. All development rights are permanently removed from the Conservation Easement Area and are non-transferrable.

O. Disturbance of Natural Features. Any change, disturbance, alteration or impairment of the natural features of the Conservation Easement Area or any intentional introduction of non-native plants, trees and/or animal species by Grantor is prohibited.

The Grantor may request permission to vary from the above restrictions for good cause shown, provided that any such request is not inconsistent with the purposes of this Conservation Easement, and the Grantor obtains advance written approval from the Division of Mitigation Services, 1652 Mail Services Center, Raleigh, NC 27699-1652.

III. GRANTEE RESERVED USES

A. Right of Access, Construction, and Inspection. The Grantee, its employees and agents, successors and assigns, receive a perpetual Right of Access to the Conservation Easement Area over the Property at reasonable times to undertake any activities to restore, construct, manage, maintain, enhance, protect, and monitor the stream, wetland and any other riparian resources in the Conservation Easement Area, in accordance with restoration activities or a long-term management plan. Unless otherwise specifically set forth in this Conservation Easement, the rights granted herein do not include or establish for the public any access rights.

B. Restoration Activities. These activities include planting of trees, shrubs and herbaceous vegetation, installation of monitoring wells, utilization of heavy equipment to grade, fill, and prepare the soil, modification of the hydrology of the site, and installation of natural and manmade materials as needed to direct in-stream, above ground, and subterraneous water flow.

C. Signs. The Grantee, its employees and agents, successors or assigns, shall be permitted to place signs and witness posts on the Property to include any or all of the following: describe the project, prohibited activities within the Conservation Easement, or identify the project boundaries and the holder of the Conservation Easement.

D. Fences. Conservation Easements are purchased to protect the investments by the State (Grantee) in natural resources. Livestock within conservations easements damages the investment and can result in reductions in natural resource value and mitigation credits which would cause financial harm to the State. Therefore, Landowners (Grantor) with livestock are required to restrict livestock access to the Conservation Easement area. Repeated failure to do so may result in the State (Grantee) repairing or installing livestock exclusion devices (fences) within the conservation area for the purpose of restricting livestock access. In such cases, the landowner (Grantor) must provide access to the State (Grantee) to make repairs.

E. Crossing Area(s). The Grantee is not responsible for maintenance of crossing area(s), however, the Grantee, its employees and agents, successors or assigns, reserve the right to repair crossing area(s), at its sole discretion and to recover the cost of such repairs from the Grantor if such repairs are needed as a result of activities of the Grantor, his successors or assigns.

IV. ENFORCEMENT AND REMEDIES

A. Enforcement. To accomplish the purposes of this Conservation Easement, Grantee is allowed to prevent any activity within the Conservation Easement Area that is inconsistent with the purposes of this Conservation Easement and to require the restoration of such areas or features in the Conservation Easement Area that may have been damaged by such unauthorized activity or use. Upon any breach of the terms of this Conservation Easement by Grantor, the Grantee shall, except as provided below, notify the Grantor in writing of such breach and the Grantor shall have ninety (90) days after receipt of such notice to correct the damage caused by such breach. If the breach and damage remains uncured after ninety (90) days, the Grantee may enforce this Conservation Easement by bringing appropriate legal proceedings including an action to recover damages, as well as injunctive and other relief. The Grantee shall also have the

power and authority, consistent with its statutory authority: (a) to prevent any impairment of the Conservation Easement Area by acts which may be unlawful or in violation of this Conservation Easement; (b) to otherwise preserve or protect its interest in the Property; or (c) to seek damages from any appropriate person or entity. Notwithstanding the foregoing, the Grantee reserves the immediate right, without notice, to obtain a temporary restraining order, injunctive or other appropriate relief, if the breach is or would irreversibly or otherwise materially impair the benefits to be derived from this Conservation Easement, and the Grantor and Grantee acknowledge that the damage would be irreparable and remedies at law inadequate. The rights and remedies of the Grantee provided hereunder shall be in addition to, and not in lieu of, all other rights and remedies available to Grantee in connection with this Conservation Easement.

B. Inspection. The Grantee, its employees and agents, successors and assigns, have the right, with reasonable notice, to enter the Conservation Easement Area over the Property at reasonable times for the purpose of inspection to determine whether the Grantor is complying with the terms, conditions and restrictions of this Conservation Easement.

C. Acts Beyond Grantor's Control. Nothing contained in this Conservation Easement shall be construed to entitle Grantee to bring any action against Grantor for any injury or change in the Conservation Easement Area caused by third parties, resulting from causes beyond the Grantor's control, including, without limitation, fire, flood, storm, and earth movement, or from any prudent action taken in good faith by the Grantor under emergency conditions to prevent, abate, or mitigate significant injury to life or damage to the Property resulting from such causes.

D. Costs of Enforcement. Beyond regular and typical monitoring expenses, any costs incurred by Grantee in enforcing the terms of this Conservation Easement against Grantor, including, without limitation, any costs of restoration necessitated by Grantor's acts or omissions in violation of the terms of this Conservation Easement, shall be borne by Grantor.

E. No Waiver. Enforcement of this Easement shall be at the discretion of the Grantee and any forbearance, delay or omission by Grantee to exercise its rights hereunder in the event of any breach of any term set forth herein shall not be construed to be a waiver by Grantee.

V. MISCELLANEOUS

A. This instrument sets forth the entire agreement of the parties with respect to the Conservation Easement and supersedes all prior discussions, negotiations, understandings or agreements relating to the Conservation Easement. If any provision is found to be invalid, the remainder of the provisions of the Conservation Easement, and the application of such provision to persons or circumstances other than those as to which it is found to be invalid, shall not be affected thereby.

B. Grantor is responsible for any real estate taxes, assessments, fees, or charges levied upon the Property. Grantee shall not be responsible for any costs or liability of any kind related to the ownership, operation, insurance, upkeep, or maintenance of the Property, except as expressly provided herein. Upkeep of any constructed bridges, fences, or other amenities on the Property are the sole responsibility of the Grantor. Nothing herein shall relieve the Grantor of the

obligation to comply with federal, state or local laws, regulations and permits that may apply to the exercise of the Reserved Rights.

C. Any notices shall be sent by registered or certified mail, return receipt requested to the parties at their addresses shown herein or to other addresses as either party establishes in writing upon notification to the other.

D. Grantor shall notify Grantee in writing of the name and address and any party to whom the Property or any part thereof is to be transferred at or prior to the time said transfer is made. Grantor further agrees that any subsequent lease, deed, or other legal instrument by which any interest in the Property is conveyed is subject to the Conservation Easement herein created.

E. The Grantor and Grantee agree that the terms of this Conservation Easement shall survive any merger of the fee and easement interests in the Property or any portion thereof.

F. This Conservation Easement and Right of Access may be amended, but only in writing signed by all parties hereto, or their successors or assigns, if such amendment does not affect the qualification of this Conservation Easement or the status of the Grantee under any applicable laws, and is consistent with the purposes of the Conservation Easement. The owner of the Property shall notify the State Property Office and the U.S. Army Corps of Engineers in writing sixty (60) days prior to the initiation of any transfer of all or any part of the Property or of any request to void or modify this Conservation Easement. Such notifications and modification requests shall be addressed to:

Division of Mitigation Services Program Manager NC State Property Office 1321 Mail Service Center Raleigh, NC 27699-1321

and

General Counsel US Army Corps of Engineers 69 Darlington Avenue Wilmington, NC 28403

G. The parties recognize and agree that the benefits of this Conservation Easement are in gross and assignable provided, however, that the Grantee hereby covenants and agrees, that in the event it transfers or assigns this Conservation Easement, the organization receiving the interest will be a qualified holder under N.C. Gen. Stat. § 121-34 et seq. and § 170(h) of the Internal Revenue Code, and the Grantee further covenants and agrees that the terms of the transfer or assignment will be such that the transferee or assignee will be required to continue in perpetuity the conservation purposes described in this document.

VI. QUIET ENJOYMENT

Grantor reserves all remaining rights accruing from ownership of the Property, including the right to engage in or permit or invite others to engage in only those uses of the Conservation Easement Area that are expressly reserved herein, not prohibited or restricted herein, and are not inconsistent with the purposes of this Conservation Easement. Without limiting the generality of the foregoing, the Grantor expressly reserves to the Grantor, and the Grantor's invitees and licensees, the right of access to the Conservation Easement Area, and the right of quiet enjoyment of the Conservation Easement Area,

TO HAVE AND TO HOLD, the said rights and easements perpetually unto the State of North Carolina for the aforesaid purposes,

AND Grantor covenants that Grantor is seized of said premises in fee and has the right to convey the permanent Conservation Easement herein granted; that the same is free from encumbrances and that Grantor will warrant and defend title to the same against the claims of all persons whomsoever.

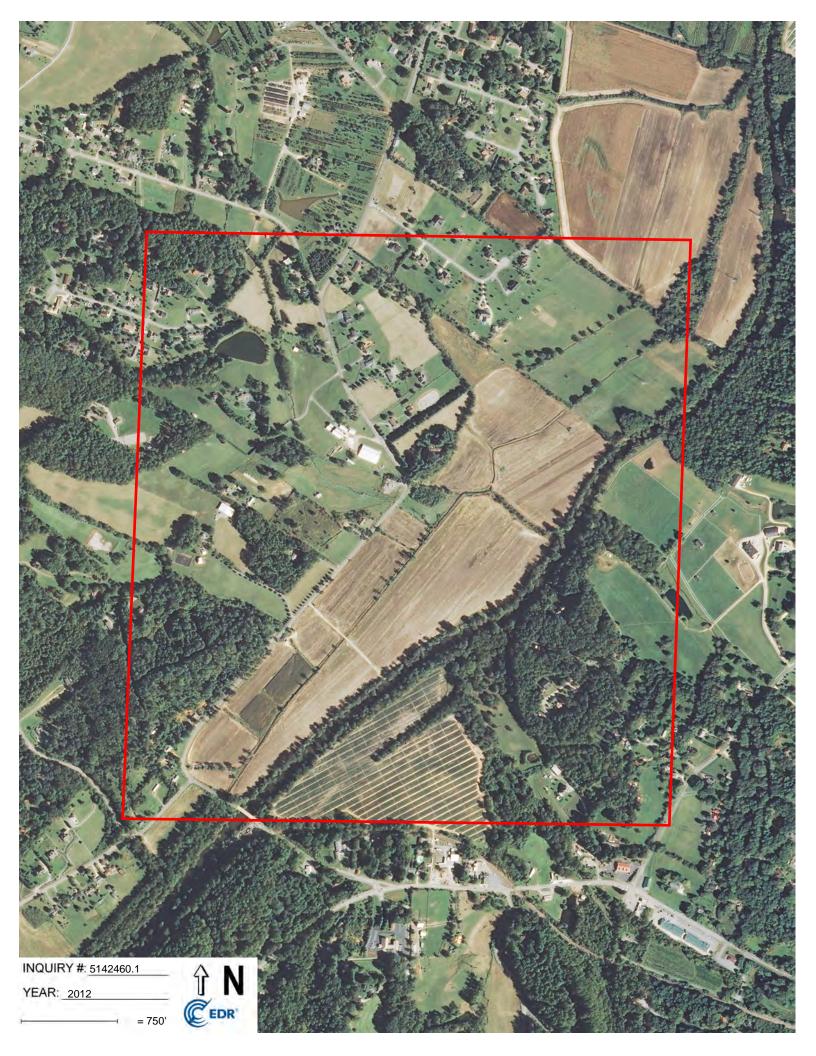
IN TESTIMONY WHEREOF, the Grantor has hereunto set his hand and seal, the day and year first above written.

_____(SEAL)

NORTH CAROLINA COUNTY OF _____

I, _____, a Notary Public in and for the County and State aforesaid, do hereby certify that ______, Grantor, personally appeared before me this day and acknowledged the execution of the foregoing instrument.

IN WITNESS WHEREOF, I have hereunto set my hand and Notary Seal this the _____ day of _____, 20_.


Notary Public

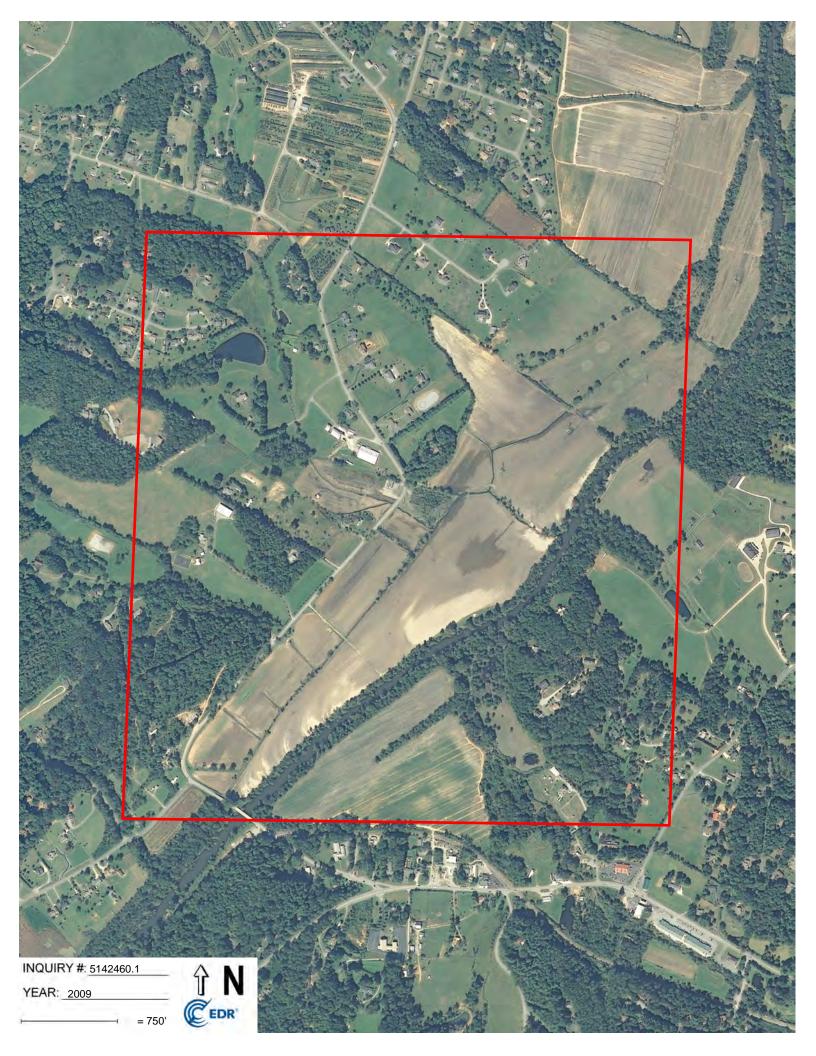

My commission expires:

Exhibit A

[INSERT LEGAL DESCRIPTION]

APPENDIX 2 Historic Aerial Photos

APPENDIX 3 Jurisdictional Determination and Wetland Assessment Forms

U.S. ARMY CORPS OF ENGINEERS WILMINGTON DISTRICT

Action ID: SAW-2018-01153 County: Henderson U.S.G.S. Quad: Horse Shoe

NOTIFICATION OF JURISDICTIONAL DETERMINATION

 Property Owner:
 Wildlands Engineering, Inc. / Attn.: Jordan Hessler

 Address:
 167-B Haywood Road

 Asheville, NC 28806
 704-332-7754

 Size (acres):
 61.1

 Nearest Waterway:
 UTs French Broad River

 River Basin/ HUC:
 Upper French Broad (06010105)

Nearest Town: Mills River Coordinates: 35.35088 N, 82.55689 W

Location description: The project site is located on a tract of land (PINs 9630-82-6726, 9630-92-4395, 9630-91-2884, 9640-02-8341, 9630-91-9204, 9630-90-0480, and 9539-89-5929) which are generally portions of parcels east of Banner Farm Road and west of the French Broad River, including unassigned addressed parcels and parcels at 52, 56, and 60 Banner Farm Road in Mills River, Henderson County, North Carolina.

Indicate Which of the Following Apply:

A. Preliminary Determination

- X There are waters, including wetlands, on the above described project area, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). The waters, including wetlands, have been delineated, and the delineation has been verified by the Corps to be sufficiently accurate and reliable. Therefore this preliminary jurisdiction determination may be used in the permit evaluation process, including determining compensatory mitigation. For purposes of computation of impacts, compensatory mitigation requirements, and other resource protection measures, a permit decision made on the basis of a preliminary JD will treat all waters and wetlands that would be affected in any way by the permitted activity on the site as if they are jurisdictional waters of the U.S. This preliminary determination is not an appealable action under the Regulatory Program Administrative Appeal Process (Reference 33 CFR Part 331). However, you may request an approved JD, which is an appealable action, by contacting the Corps district for further instruction.
- _ There are wetlands on the above described property, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). However, since the waters, including wetlands, have not been properly delineated, this preliminary jurisdiction determination may not be used in the permit evaluation process. Without a verified wetland delineation, this preliminary determination is merely an effective presumption of CWA/RHA jurisdiction over all of the waters, including wetlands, at the project area, which is not sufficiently accurate and reliable to support an enforceable permit decision. We recommend that you have the waters of the U.S. on your property delineated. As the Corps may not be able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that can be verified by the Corps.

B. Approved Determination

- There are Navigable Waters of the United States within the above described property subject to the permit requirements of Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403) and Section 404 of the Clean Water Act (CWA)(33 USC § 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.
- There are waters of the U.S. including wetlands on the above described property subject to the permit requirements of Section 404 of the Clean Water Act (CWA)(33 USC § 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

_ We recommend you have the waters of the U.S. on your property delineated. As the Corps may not be able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that can be verified by the Corps.

_ The waters of the U.S. including wetlands on your project area have been delineated and the delineation has been verified by the Corps. If you wish to have the delineation surveyed, the Corps can review and verify the survey upon

completion. Once verified, this survey will provide an accurate depiction of all areas subject to CWA and/or RHA jurisdiction on your property which, provided there is no change in the law or our published regulations, may be relied upon for a period not to exceed five years.

_____ The waters of the U.S. including wetlands have been delineated and surveyed and are accurately depicted on the plat signed by the Corps Regulatory Official identified below on______. Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

- There are no waters of the U.S., to include wetlands, present on the above described project area which are subject to the permit requirements of Section 404 of the Clean Water Act (33 USC 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.
- The property is located in one of the 20 Coastal Counties subject to regulation under the Coastal Area Management Act (CAMA). You should contact the Division of Coastal Management to determine their requirements.

Placement of dredged or fill material within waters of the US and/or wetlands without a Department of the Army permit may constitute a violation of Section 301 of the Clean Water Act (33 USC § 1311). Placement of dredged or fill material, construction or placement of structures, or work within navigable waters of the United States without a Department of the Army permit may constitute a violation of Sections 9 and/or 10 of the Rivers and Harbors Act (33 USC § 401 and/or 403). If you have any questions regarding this determination and/or the Corps regulatory program, please contact **David Brown** at **828-271-7980**, ext. **4232** or **david.w.brown@usace.army.mil**.

C. Basis for Determination:

See attached preliminary jurisdictional determination form.

D. Remarks:

The potential waters of the U.S., at this site, were verified on-site by the Corps on October 9, 2019, and are as approximately depicted on the attached *Delineation Map-Banner Farm Mitigation Site* (Figures 3.0-3.3), dated October 9, 2019, and submitted by Wildlands Engineering, Inc.

E. Attention USDA Program Participants

This delineation/determination has been conducted to identify the limits of Corps' Clean Water Act jurisdiction for the particular site identified in this request. The delineation/determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA Program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

F. Appeals Information (This information applies only to approved jurisdictional determinations as indicated in B. above)

This correspondence constitutes an approved jurisdictional determination for the above described site. If you object to this determination, you may request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and request for appeal (RFA) form. If you request to appeal this determination you must submit a completed RFA form to the following address:

US Army Corps of Engineers South Atlantic Division Attn: Philip Shannin, Review Officer 60 Forsyth Street SW, Room 10M15 Atlanta, Georgia 30303-8801

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR part 331.5, and that it has been received by the Division Office within 60 days of the date of the NAP. Should you decide to submit an RFA form, it must be received at the above address by, N/A (Preliminary-JD).

It is not necessary to submit an RFA form to the Division Office if you do not object to the determination in this correspondence.

Contract of the second second second	David Brow	vn
Corps Regulatory Official:	2 dell	2

Issue Date of JD: November 19, 2019

Expiration Date: N/A Preliminary JD

The Wilmington District is committed to providing the highest level of support to the public. To help us ensure we continue to do so, please complete our Customer Satisfaction Survey, located online at http://corpsmapu.usace.army.mil/cm_apex/f?p=136:4:0.

Copy furnished:

Mitchell and Wendy Gaither, 60 Banner Farm Road, Mills River, NC 28759

Mountain Bean Holdings, Inc., P.O. Box 637, Horse Shoe, NC 28742

Vine Ripe Investments, Inc., P.O. Box 609, Horse Shoe, NC 28742

Preston and Judy Johnson, P.O. Box 901177, Homestead, FL 33090

Kirby and Sherri Johnson, 207 E. Price Street, Hendersonville, NC 28739

BLANK PAGE

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

	t: Wildlands Engineering, Inc. / Attn.: File Number: SAW-2018-0115 Jordan Hessler		1153	Date: November 19, 2019	
Attached is:			See Se	ection below	
INITIAL PROFFERED PERMIT (Standard Permit or Letter of permission)			A		
PROFFERED PERMIT (Standard Permit or Letter of permission)			В		
PERMIT DENIAL	PERMIT DENIAL			С	
APPROVED JURISDICTIONAL DETERMINATION		11	D		
PRELIMINARY JURI	SDICTIONAL DETERMIN	JATION		Е	

SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at http://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits.aspx or Corps regulations at 33 CFR Part 331.

A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature
 on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the
 permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.

B: PROFFERED PERMIT: You may accept or appeal the permit

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature
 on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the
 permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you
 may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form
 and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of
 this notice.

C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.

- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of
 this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the district engineer. This form must be received by the division engineer within 60 days of the date of this notice.

E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

SECTION II - REQUEST FOR APPEAL or OBJECTIONS TO AN INITIAL PROFFERED PERMIT

REASONS FOR APPEAL OR OBJECTIONS: (Describe your reasons for appealing the decision or your objections to an initial proffered permit in clear concise statements. You may attach additional information to this form to clarify where your reasons or objections are addressed in the administrative record.)

ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record.

POINT OF CONTACT FOR QUESTIONS OR INFORMATION:

If you have questions regarding this decision and/or the appeal process you may contact: District Engineer, Wilmington Regulatory Division,	If you only have questions regarding the appeal process you may also contact: Mr. Philip Shannin, Administrative Appeal Review Officer
Attn: David Brown	CESAD-PDO
151 Patton Avenue, Room 208 Asheville, North Carolina 28801-5006	U.S. Army Corps of Engineers, South Atlantic Division 60 Forsyth Street, Room 10M15
828-271-7980, ext. 4232	Atlanta, Georgia 30303-8801 Phone: (404) 562-5137

RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day notice of any site investigation, and will have the opportunity to participate in all site investigations.

	Date:	Telephone number:	
Signature of appellant or agent.			

For appeals on Initial Proffered Permits send this form to:

District Engineer, Wilmington Regulatory Division, Attn.: David Brown, 69 Darlington Avenue, Wilmington, North Carolina 28403

For Permit denials, Proffered Permits and approved Jurisdictional Determinations send this form to:

Division Engineer, Commander, U.S. Army Engineer Division, South Atlantic, Attn: Mr. Phillip Shannin, Administrative Appeal Officer, CESAD-PDO, 60 Forsyth Street, Room 10M15, Atlanta, Georgia 30303-8801 Phone: (404) 562-5137

PRELIMINARY JURISDICTIONAL DETERMINATION (JD) FORM U.S. Army Corps of Engineers

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PRELIMINARY JD: November 19, 2019
- B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD: Wildlands Engineering, Inc. / Attn.: Jordan Hessler 167-B Haywood Road Asheville, NC 28806
- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: CESAW-RG-A, SAW-2018-01153, NCDMS ILF Banner Farm Mitigation Site

CESAW-ACG-A, SAW-2018-01155, INCOMS ILF Banner Farm Mitigation Site

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: The project site is located on a tract of land (PINs 9630-82-6726, 9630-92-4395, 9630-91-2884, 9640-02-8341, 9630-91-9204, 9630-90-0480, and 9539-89-5929) which are generally portions of parcels east of Banner Farm Road and west of the French Broad River, including unassigned addressed parcels and parcels at 52, 56, and 60 Banner Farm Road in Mills River, Henderson County, North Carolina.

State: NCCounty/parish/borough: HendersonCity: Mills RiverCenter coordinates of site (lat/long in degree decimal format): 35.35088 N, 82.55689 WUniversal Transverse Mercator: N/AName of nearest waterbody: UTs French Broad River

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

 ∑ Office (Desk) Determination.

 ∑ FieldDetermination.

 Date: November 19, 2019
 Date(s): October 9, 2019

Use the table below to document aquatic resources and/or aquatic resources at different sites

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION

Site Number	1 T 1 T 1 T T T T T T T T T T	Coordinates degrees) Longitude	Estimated A mount of Aquatic Resource in Review Area (linear feet or acre)	Type of Aquatic Resources	Geographic Authority to Which Aquatic Resource "May Be" Subject
Banner Creek (UT French Broad River)	35.35539	-82.55942	3,272 lf	Wetland Non-wetland Waters	Section 404
UT1 (UT French Broad River	35.35356	-82.55421	878 lf	☐ Wetland ⊠ Non-wetland Waters	Section 404
UT2 (UT French Broad River)	35.34857	-82.55913	1,930 lf	☐ Wetland ⊠ Non-wetland Waters	Section 404
Wetland A	35.353209	-82.552293	0.54 ac	Wetland	Section 404
Wetland B	35.351927	-82.554840	0.09 ac	Wetland	Section 404

Wetland C	35.351520	-82.556267	0.004 ac	Wetland	Section 404
Wetland D	35.350908	-82.556404	0.17 ac	⊠ Wetland □ Non-wetland Waters	Section 404
Wetland E	35.350698	-82.556398	0.003 ac	⊠ Wetland □ Non-wetland Waters	Section 404
Wetland F	35.349546	-82.557627	0.03 ac	Wetland	Section 404
Wetland G	35.348435	-82,559495	0.01 ac	Wetland	Section 404
Wetland H	35.347386	-82,559793	0.13 ac	Wetland	Section 404
Wetland I	35.346085	-82.561050	0.02 ac	Wetland	Section 404
Wetland J	35.346677	-82.560354	0.11 ac	Wetland	Section 404
Wetland K	35.345746	-82.561251	0.16 ac	Wetland	Section 404
Wetland L	35.345256	-82.560874	0.04 ac	Wetland	Section 404
Wetland M	35.353680	-82.559013	0.003 ac	Wetland	Section 404
Wetland N	35.353641	-82.559056	0.003 ac	Wetland	Section 404
Wetland O	35.353030	-82.558640	0.01 ac	Wetland	Section 404
Wetland P	35.352911	-82.558349	0.01 ac	Wetland	Section 404
Wetland Q	35,352746	-82.558248	0.14 ac	Wetland	Section 404
Wetland R	35,352391	-82.558560	0.15 ac	Wetland	Section 404
Wetland S	35,352292	-82.557848	1.62 ac	Wetland	Section 404
Wetland T	35.352990	-82.558923	0.04 ac	Wetland	Section 404
Wetland U	35.353294	-82.558995	0.04 ac	Wetland	Section 404
Wetland V	35.355278	-82.559389	0.004 ac	Wetland	Section 404
Wetland W	35.353934	-82.552684	0.28 ac	Wetland	Section 404
Open Water 1	35.34724	-82,559173	0.40 ac	Wetland Non-wetland Water	Section 404

1. The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an

approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.

In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General 2. Permit (NWP) or other general permit verification requiring "pre- construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA

Data reviewed for preliminary JD (check all that apply) - Checked items should be included in subject file. Appropriately reference sources below where indicated for all checked items:

A TRANSPORT REPORT OF A CONTRACT OF
 Maps, plans, plots or plat submitted by or on behalf of preliminary JD requester: Wildlands Engineering, Inc. Data sheets prepared/submitted by or on behalf of preliminary JD requester. Wildlands Engineering, Inc. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Rational:
Data sheets prepared by the Corps:
Corps navigable waters' study:
U.S. Geological Survey (USGS) Hydrologic Atlas:
USGS NHD data.
USGS 8 and 12 digit HUC maps.
USGS map(s). Cite scale & quad name: Horse Shoe.
Natural Resources Conservation Service (NRCS) Soil Survey.
Citation: Henderson County, NC
National wetlands inventory (NWI) map(s). Cite name:
State/Local wetland inventory map(s):
Federal Emergency Management Agency (FEMA) / Flood Insurance Rate Map (FIRM) maps: Map nos. 3700963000.
and 3700964000J, effective date Oct. 2, 2008
100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)
Photographs: Aerial (Name & Date): Google Earth Pro, Oct. 2015, Nov. 2013, Oct. 2010, May 2009, Jun. 2008, Apr. 2007, May 2006, Apr. 2004, Mar. 1998, and Mar. 1994

or Other (Name & Date):

Previous determination(s). File no. and date of response letter:

Applicable/supporting scientific literature:

Other information (please specify): The site contains wetlands as determined by the 1987 Corps of Engineers Wetland Delineation Manual and the Regional Supplement to the Corps of Engineers Wetlands Delineation Manual: Eastern Mountain and Piedmont Region (Version 2.0). These wetlands are abutting to stream channels located at the site and flow into the channels. Wetland hydrology is enhanced with the abutting stream channels via normal down gradient flows and periods of high water.

The site also contains open water (impoundment) that abuts wetlands and a stream channel at the site. The impoundment receives waters and/or flow directly into associated abutting wetlands and stream.

The streams on the property are UTs of the French Broad River, which all exhibit physical ordinary high water mark (OHWM) indicators including, break in slope; developed bed and bank; changes in sediment texture and soil character; natural line impressed on the bank; shelving; absence of vegetation; leaf litter washed away; sediment deposition and sorting; presence of aquatic life; water staining; presence of debris; and scour. Some of the streams are depicted as solid blue lines on the USGS 7.5 minute quadrangle map Horse Shoe and the most current Natural Resource Conservation Service Soil Survey for Henderson County. Solid blue line features on these mapping conventions typically represent perennial streams.

The UTs of the French Broad River flow into the French Broad River, a traditional navigable water. The French Broad River merges with the Holston River to form the Tennessee River. The Tennessee River flows into the Ohio River then to the Mississippi River before entering the Gulf of Mexico.

IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

David Brown, November 19, 2019 Signature and date of Regulatory staff member completing preliminary JD

Wildlands Engineering, Inc. (per Agent Authorization) Signature and date of person requesting preliminary JD (REQUIRED, unless obtaining the signature is impracticable)

Please sign this Preliminary JD Form. Keep a signed copy for your record and return a signed form to the Asheville Regulatory Field Office by mail or e-mail.

> US Army Corps of Engineers-Wilmington District Asheville Regulatory Field Office 151 Patton Avenue, Room 208 Asheville, NC 28801-5006

¹ Districts may establish timeframes for requester to return signed PJD forms. If the requester does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

Preliminary ORM Data Entry Fields for New Actions

ACTION ID #: SAW-	Begin Date (Date Received):			
Prepare file folder	Assign Action ID Number in ORM			
1. Project Name [PCN Form A2a]: Banner Farm Mitig	gation Site			
2. Work Type: Private Institutional	Government Commercial			
3. Project Description / Purpose [PCN Form B3d and B	3e]:			
The Banner Farm Mitigation Site is being developed to generate str of Environmental Quality Division of Mitigation Services. The pro- and 33 acres of wetland.	ream and wetland mitigation units for the North Carolina Department ject proposes to restore approximately 6,080 Linear feet of stream			
4. Property Owner / Applicant [PCN Form A3 or A4]:	Wildlands Engineering, Inc.			
5. Agent / Consultant [PNC Form A5 – or ORM Consu	ltant ID Number]:			
Jordan Hessler				
6. Related Action ID Number(s) [PCN Form B5b]:				
7. Project Location – Coordinates, Street Address, and/	or Location Description [PCN Form B1b]:			
Coordinates: 35.350886, -82.556899 Site Address: 52 Banner Farm Road, Mills River, N	C 28759			
8. Project Location – Tax Parcel ID [PCN Form B1a]:	Multiple (Information Attached)			
9. Project Location – County [PCN Form A2b]: Hende				
10. Project Location – Nearest Municipality or Town [PO	CN Form A2c]: Mills River			
11. Project Information – Nearest Waterbody [PCN Form	^{n B2a]:} French Broad River			
12. Watershed / 8-Digit Hydrologic Unit Code [PCN For	^{rm B2c]:} 06010105			
Authorization: Section 10 Section 404 🖌	Section 10 and 404			
Regulatory Action Type:				
 Standard Permit Nationwide Permit # Regional General Permit # Jurisdictional Determination Request 	 Pre-Application Request Unauthorized Activity Compliance No Permit Required 			

August 12, 2019

Mr. David Brown Asheville Regulatory Field Office 151 Patton Avenue, Room 208 Asheville, North Carolina 28801-5006

Subject: Preliminary Jurisdictional Delineation and Request for Verification Banner Farm Mitigation Site Henderson County, North Carolina

Dear Mr. Brown:

Wildlands Engineering, Inc. (Wildlands) is requesting written verification from the U.S. Army Corps of Engineers (USACE) regarding the extent of potential features within the project area. The Banner Farms Mitigation Site is in Henderson County approximately 3 miles south of Mills River and 6 miles northwest of Hendersonville (Figures 1 & 2). The Banner Farms Mitigation Site is being developed to provide mitigation for unavoidable stream and wetland impacts. Wildlands is currently in the design process of developing a draft mitigation plan.

Methodology

Wildlands delineated potential waters of the U.S. within the proposed project area using the USACE Routine On-Site Determination Method defined by the 1987 Corps of Engineers Wetlands Delineation Manual and subsequent Eastern Mountain and Piedmont Regional Supplement Version 2.0 (2012). Wetland Determination Data Forms representative of on-site wetland areas as well as upland areas are enclosed (DP1-DP6). Non-wetland waters (streams) were reviewed using USACE Ordinary High-Water Marks guidance (2005) and classified using the North Carolina Department of Water Resources (NCDWR) Methodology for Identification of Intermittent and Perennial Streams and Their Origins (Version 4.11, 2010). NCDWR Stream Classification Forms representative of on-site stream channels are enclosed (SCP1-SCP3).

Field Investigation Results

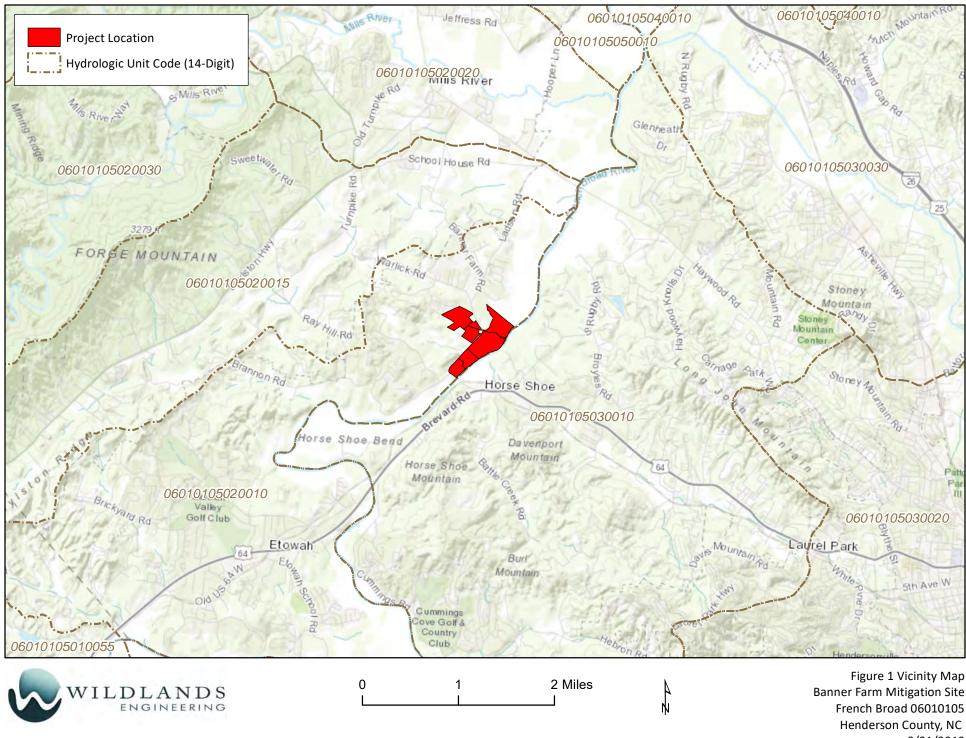
The results of the on-site field investigation indicate there are three streams and 23 wetlands located within the assessment area (Figures 3 - 3.3). The streams are unnamed tributaries (UTs) to the French Broad River (NCDWR Index No. 6-(47.5)), which is classified as a WS-IV, B water. On-site stream channels are located within NCDWR Subbasin 04-03-03 of the French Broad River Basin (HUC# 06010105). Approximate linear footage and acreage of potential on-site waters, within the project area are summarized in Table 1.

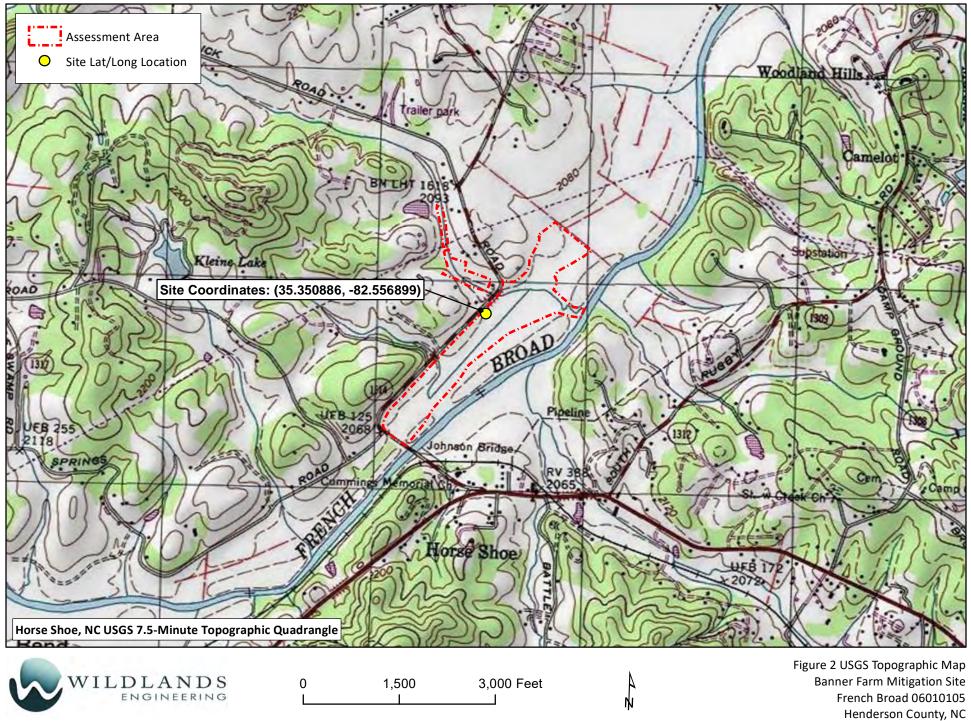
Feature	Classification	Length (LF)	Acreage (AC)		
Banner Creek	Perennial	3,272	_		
UT1	Perennial	878	-		
UT2	Perennial	1,930	-		
Wetland A	Headwater Forest	-	0.54		
Wetland B	Headwater Forest	-	0.09		
Wetland C	Headwater Forest	-	<0.01		
Wetland D	Headwater Forest	-	0.17		
Wetland E	Headwater Forest	-	<0.01		
Wetland F	Headwater Forest	-	0.03		
Wetland G	Headwater Forest	-	0.01		
Wetland H	Headwater Forest	-	0.13		
Wetland I	Headwater Forest	-	0.02		
Wetland J	Headwater Forest	-	0.11		
Wetland K	Headwater Forest	-	0.16		
Wetland L	Headwater Forest	-	0.04		
Wetland M	Headwater Forest	-	<0.01		
Wetland N	Headwater Forest	-	<0.01		
Wetland O	Headwater Forest	-	0.01		
Wetland P	Headwater Forest	-	0.01		
Wetland Q	Headwater Forest	-	0.14		
Wetland R	Headwater Forest	-	0.15		
Wetland S	Headwater Forest	-	1.62		
Wetland T	Headwater Forest	-	0.04		
Wetland U	Headwater Forest	-	0.04		
Wetland V	Headwater Forest	-	<0.01		
Wetland W	Headwater Forest	-	0.28		
Open Water 1	Canal	-	0.40		
Spring Head	Spring	-	-		
Total: 6,080 4.04					

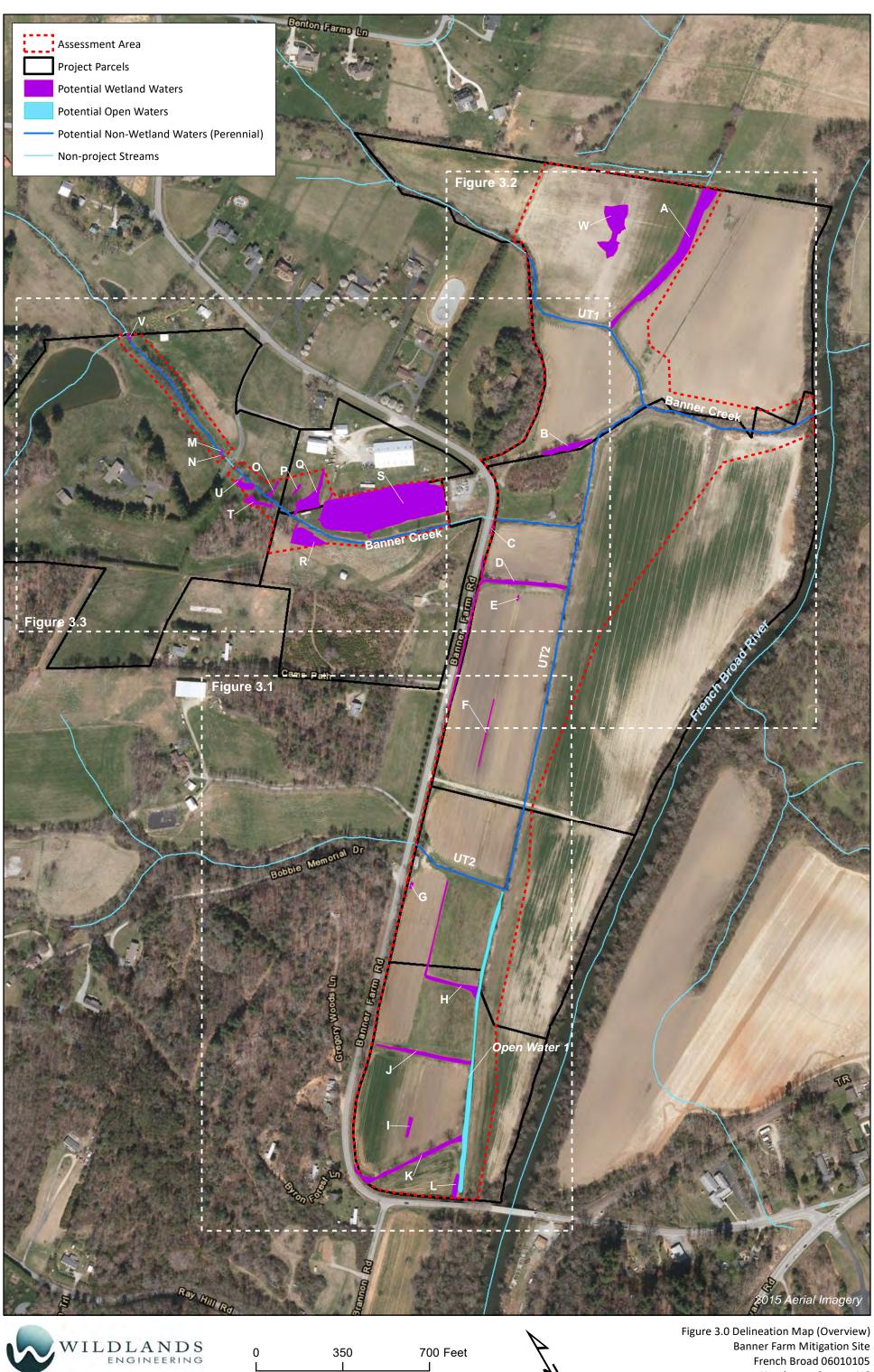
Table 1. Summary of Potential On-Site Waters

Soils

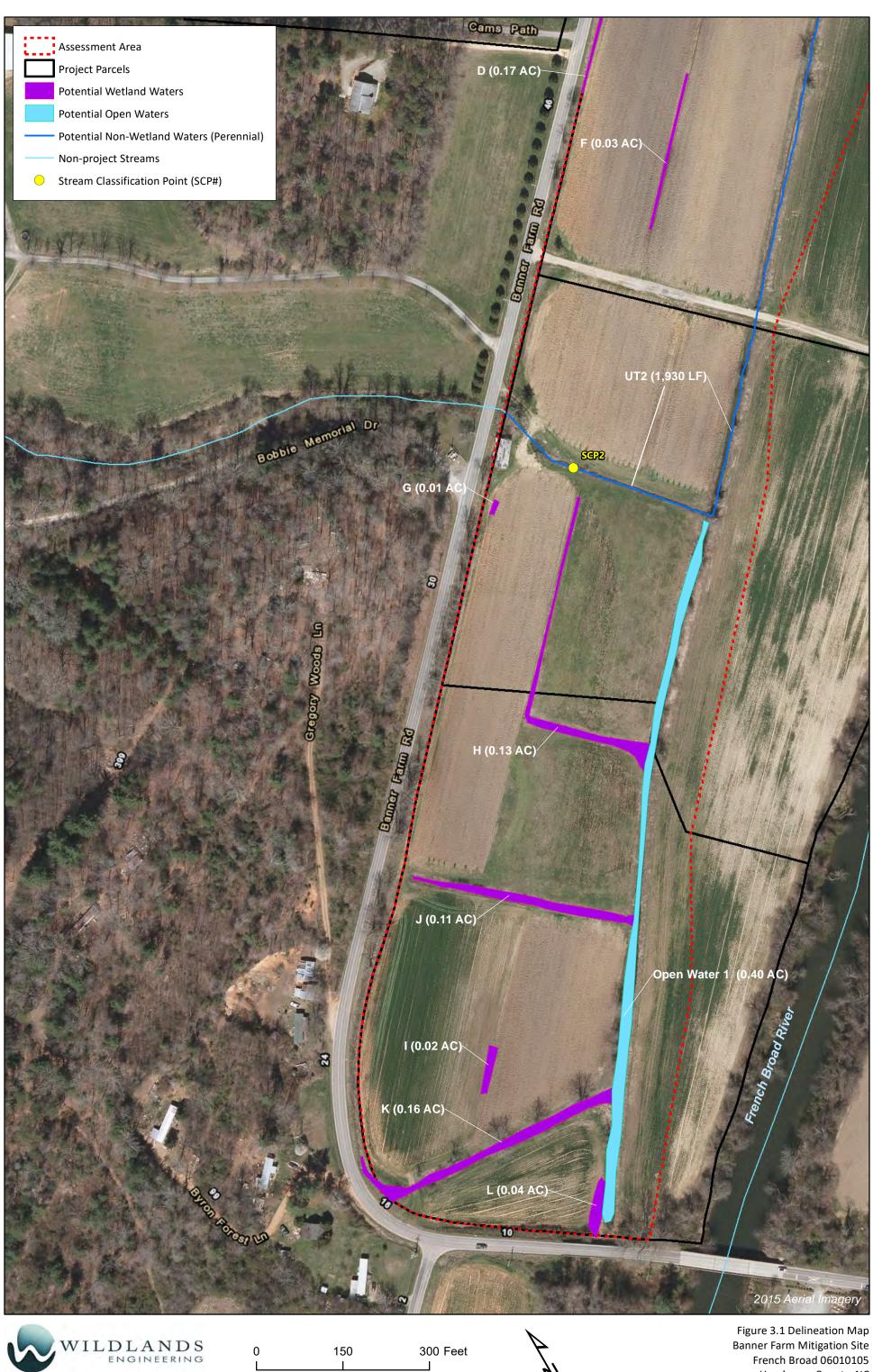
Soil types within the assessment area shown in figure 4 include Bradson gravelly loam (BaB & BaC). Codorus loam (Co), Delanco loam (DeB), Evard soils (EwF), Hayesville loam (HyE), Rosman loam (Ro), Suncook loamy sand (Su), Tate fine sandy loam (TeC), and Toxaway silt loam (To). Bradson gravelly loam is well drained and found in stream terraces and fans. Codorus loam is a somewhat poorly drained soil that experiences occasional flooding and is typically found in floodplains. Delanco loam experiences occasional flooding, is moderately well drained, and is typically found in depressions on stream terraces. Evard soils are well drained and found on mountain slopes and ridges. Hayesville loam soils are well drained and found on ridges on hillslopes. Rosman loam are well drained, frequently flooded and found in floodplains. Suncook loamy sand are well drained and found on fans, coves, and drainageways. Toxaway silt loam is frequently flooded, very poorly drained, and found in depressions on floodplains. Soil mapping units are from the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Web Soil Survey website

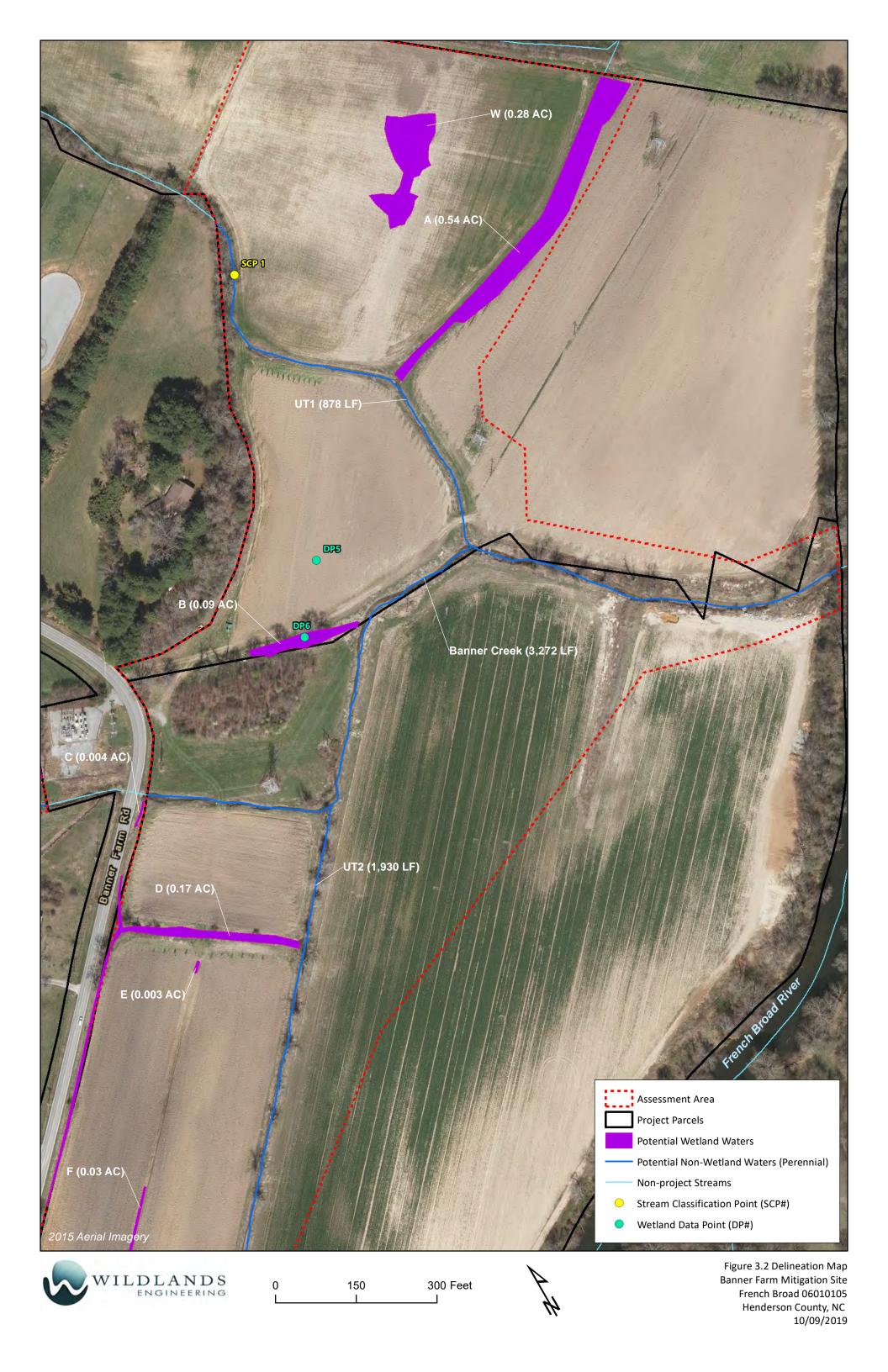

(https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm).

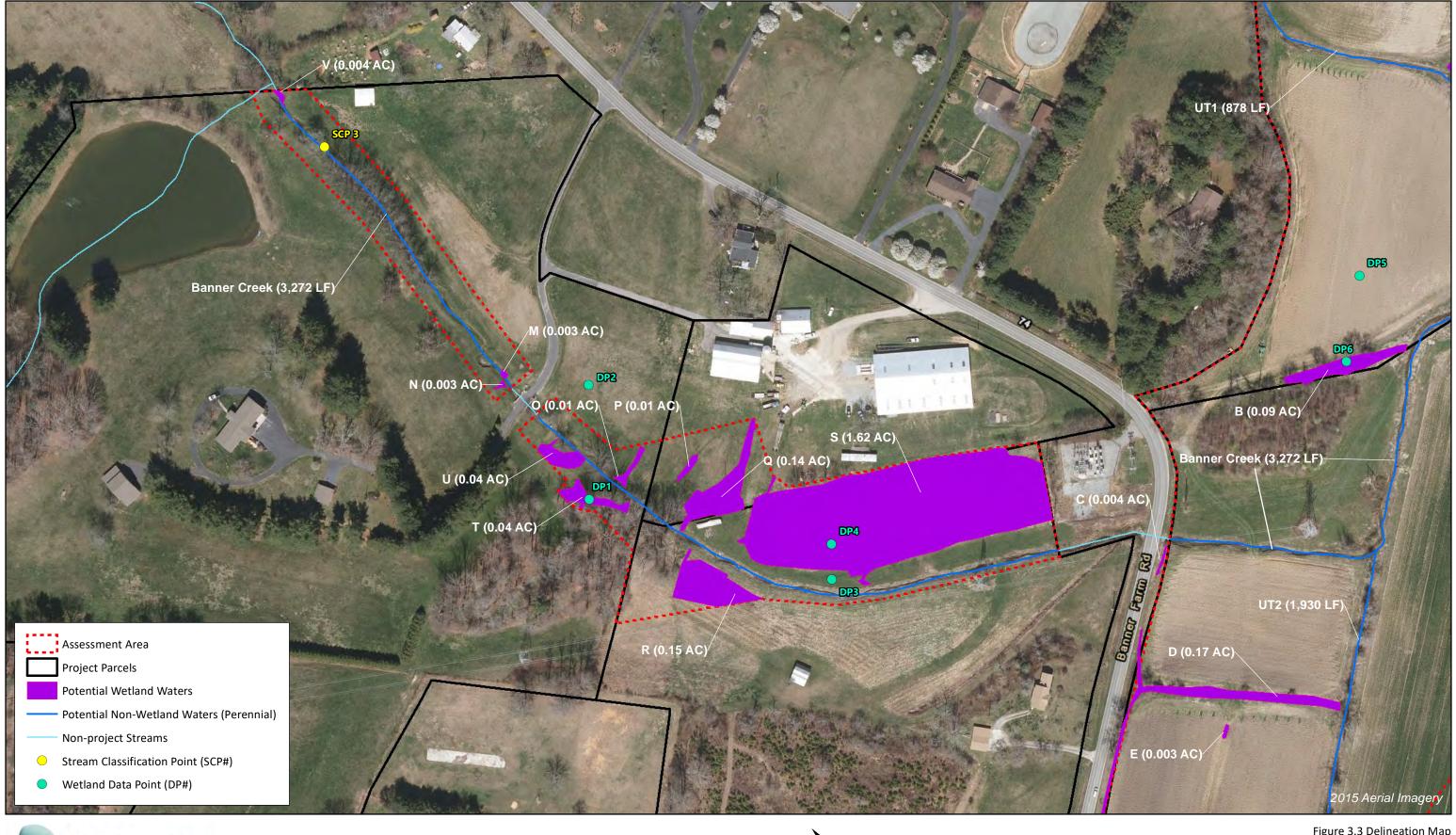

Please do not hesitate to contact me at 828-551-8582 or at jhessler@wildlandseng.com should you have any questions regarding this request for jurisdictional verification.


Sincerely,

In Hessler

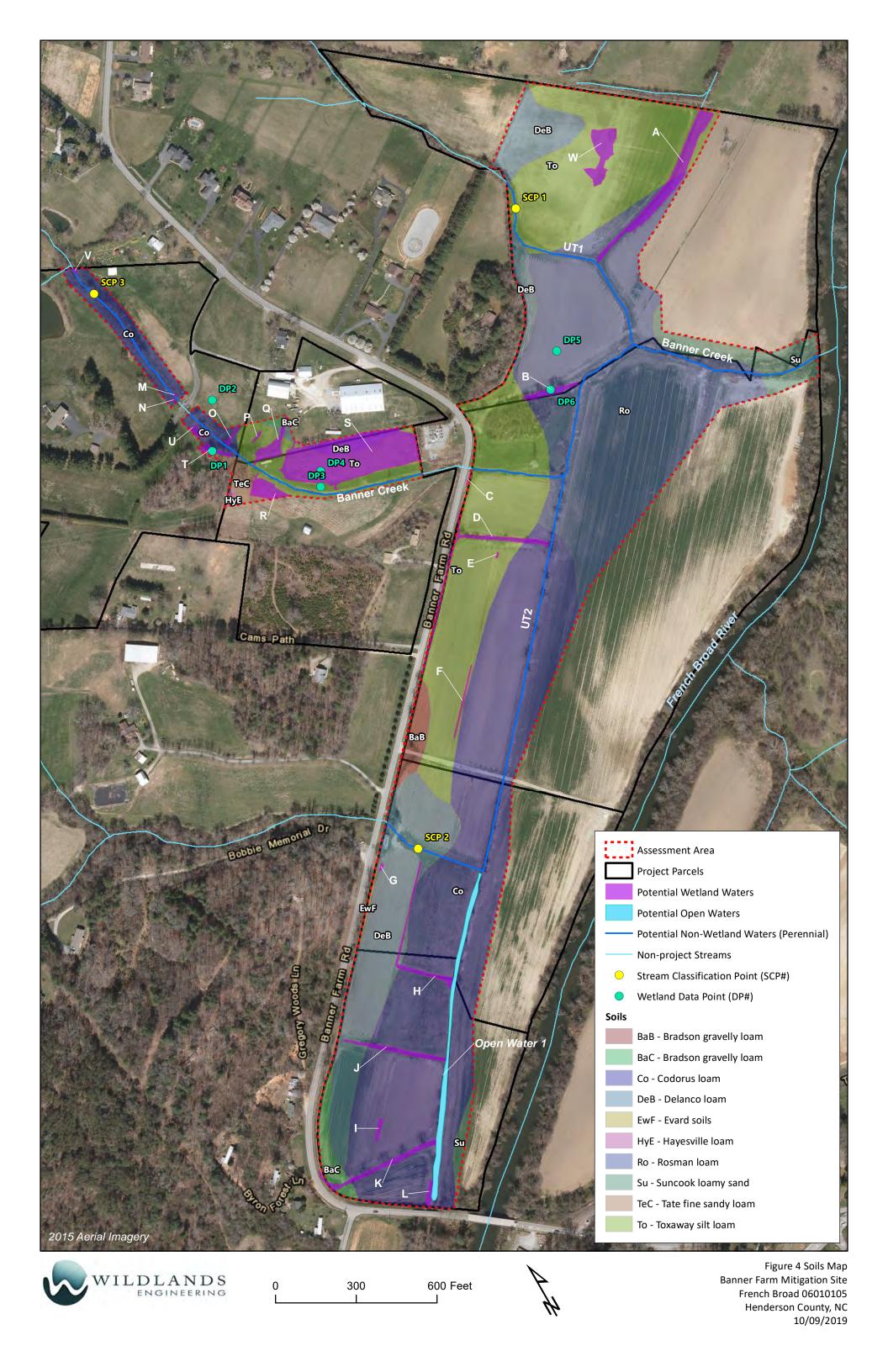

Jordan Hessler Environmental Scientist





Henderson County, NC 10/09/2019

Henderson County, NC 10/09/2019



0	150	300 Feet

Figure 3.3 Delineation Map Banner Farm Mitigation Site French Broad 06010105 Henderson County, NC 10/09/2019

Jurisdictional Determination Request

This form is intended for use by anyone requesting a jurisdictional determination (JD) from the U.S. Army Corps of Engineers, Wilmington District (Corps). Please include all supporting information, as described within each category, with your request. You may submit your request via mail, electronic mail, or facsimile. Requests should be sent to the appropriate project manager of the county in which the property is located. A current list of project managers by assigned counties can be found on-line at:

http://www.saw.usace.army.mil/Missions/RegulatoryPermitProgram/Contact/CountyLocator.aspx, by calling 910-251-4633, or by contacting any of the field offices listed below. Once your request is received you will be contacted by a Corps project manager.

ASHEVILLE & CHARLOTTE REGULATORY FIELD OFFICES

US Army Corps of Engineers 151 Patton Avenue, Room 208 Asheville, North Carolina 28801-5006 General Number: (828) 271-7980 Fax Number: (828) 281-8120

RALEIGH REGULATORY FIELD OFFICE

US Army Corps of Engineers 3331 Heritage Trade Drive, Suite 105 Wake Forest, North Carolina 27587 General Number: (919) 554-4884 Fax Number: (919) 562-0421

WASHINGTON REGULATORY FIELD OFFICE

US Army Corps of Engineers 2407 West Fifth Street Washington, North Carolina 27889 General Number: (910) 251-4610 Fax Number: (252) 975-1399

WILMINGTON REGULATORY FIELD OFFICE

US Army Corps of Engineers 69 Darlington Avenue Wilmington, North Carolina 28403 General Number: 910-251-4633 Fax Number: (910) 251-4025

INSTRUCTIONS:

All requestors must complete Parts A, B, C, D, E, F and G.

<u>NOTE TO CONSULTANTS AND AGENCIES</u>: If you are requesting a JD on behalf of a paying client or your agency, please note the specific submittal requirements in **Part H**.

<u>NOTE ON PART D – PROPERTY OWNER AUTHORIZATION:</u> Please be aware that all JD requests must include the current property owner authorization for the Corps to proceed with the determination, which may include inspection of the property when necessary. This form must be signed by the current property owner(s) or the owner(s) authorized agent to be considered a complete request.

<u>NOTE ON PART D - NCDOT REQUESTS</u>: Property owner authorization/notification for JD requests associated with North Carolina Department of Transportation (NCDOT) projects will be conducted according to the current NCDOT/USACE protocols.

<u>NOTE TO USDA PROGRAM PARTICIPANTS</u>: A Corps approved or preliminary JD may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA Program participants, or anticipate participation in USDA programs, you should also request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

Jurisdictional Determination Request

А.	PARCEL INFORMA Street Address:	ATION 52 Banner Farm Road					
	City, State:	Mills	River, NC				
	County:	Hend	lerson				
	Parcel Index Number(s) (PIN): Multiple (Information Attached)					
B.	REQUESTOR INFORMATION Name: Jordan Hessler						
	Mailing Address:		167-B Haywood Road				
			Asheville, NC 28806				
	Telephone Number:		828-551-8582				
	Electronic Mail Addre Select one:	ess: jhessler@wildlandseng.com					
	I am the currer	nt prope	erty owner.				
	\checkmark I am an Author	rized Ag	gent or Environmental Consultant ¹				
	Interested Buy	er or Ur	nder Contract to Purchase				
	Other, please e	xplain.					
C.	PROPERTY OWNE	R INFC	ORMATION ² Multiple (Information Attached)				
	Mailing Address:						
	Telephone Number:						
	Electronic Mail Address:						

¹ Must provide completed Agent Authorization Form/Letter.
 ² Documentation of ownership also needs to be provided with request (copy of Deed, County GIS/Parcel/Tax Record).

D. PROPERTY ACCESS CERTIFICATION^{3,4}

By signing below, I authorize representatives of the Wilmington District, U.S. Army Corps of Engineers (Corps) to enter upon the property herein described for the purpose of conducting onsite investigations, if necessary, and issuing a jurisdictional determination pursuant to Section 404 of the Clean Water Act and/or Section 10 of the Rivers and Harbors Act of 1899. I, the undersigned, am either a duly authorized owner of record of the property identified herein, or acting as the duly authorized agent of the owner of record of the property.

JC	ordan	H	ess	ler
00	nuui		000	101

Print	Name
Capa	city: Owner Authorized Agent ⁵
8-12	2-19
Date Date Signa	about the value
E.	REASON FOR JD REQUEST: (Check as many as applicable)

I intend to construct/develop a project or perform activities on this parcel which would be designed to avoid all aquatic resources.

I intend to construct/develop a project or perform activities on this parcel which would be designed to avoid all jurisdictional aquatic resources under Corps authority.

1	I intend to construct/develop a project or perform activities on this parcel which may
	re authorization from the Corps, and the JD would be used to avoid and minimize
impac	ets to jurisdictional aquatic resources and as an initial step in a future permitting
proce	SS.

I intend to construct/develop a project or perform activities on this parcel which may require authorization from the Corps; this request is accompanied by my permit application and the JD is to be used in the permitting process.

I intend to construct/develop a project or perform activities in a navigable water of the U.S. which is included on the district Section 10 list and/or is subject to the ebb and flow of the tide.

A Corps JD is required in order obtain my local/state authorization.

I intend to contest jurisdiction over a particular aquatic resource and request the Corps confirm that jurisdiction does/does not exist over the aquatic resource on the parcel.

I believe that the site may be comprised entirely of dry land.

Other: This is an initial step for future permitting of a stream and wetland

restoration project that will involve impacts to aquatic resources.

³ For NCDOT requests following the current NCDOT/USACE protocols, skip to Part E.

⁴ If there are multiple parcels owned by different parties, please provide the following for each additional parcel on a continuation sheet.

⁵ Must provide agent authorization form/letter signed by owner(s).

F. JURISDICTIONAL DETERMINATION (JD) TYPE (Select One)

I am requesting that the Corps provide a <u>preliminary</u> JD for the property identified herein.

A Preliminary Jurisdictional Determination (PJD) provides an indication that there may be "waters of the United States" or "navigable waters of the United States" on a property. PJDs are sufficient as the basis for permit decisions. For the purposes of permitting, all waters and wetlands on the property will be treated as if they are jurisdictional "waters of the United States". PJDs cannot be appealed (33 C.F.R. 331.2); however, a PJD is "preliminary" in the sense that an approved JD can be requested at any time. PJDs do not expire.

I am requesting that the Corps provide an <u>approved</u> JD for the property identified herein.

An Approved Jurisdictional Determination (AJD) is a determination that jurisdictional "waters of the United States" or "navigable waters of the United States" are either present or absent on a site. An approved JD identifies the limits of waters on a site determined to be jurisdictional under the Clean Water Act and/or Rivers and Harbors Act. Approved JDs are sufficient as the basis for permit decisions. AJDs are appealable (33 C.F.R. 331.2). The results of the AJD will be posted on the Corps website. A landowner, permit applicant, or other "affected party" (33 C.F.R. 331.2) who receives an AJD may rely upon the AJD for five years (subject to certain limited exceptions explained in Regulatory Guidance Letter 05-02).

I am unclear as to which JD I would like to request and require additional information to inform my decision.

G. ALL REQUESTS

Map of Property or Project Area. This Map must clearly depict the boundaries of the review area.

 \checkmark

 \checkmark

Size of Property or Review Area 61.1 acres.

The property boundary (or review area boundary) is clearly physically marked on the site.

H. REQUESTS FROM CONSULTANTS

1	
	\mathbf{V}
	•

Project Coordinates (Decimal Degrees): Latitude: 35.350886 Longitude: -82.556899

A legible delineation map depicting the aquatic resources and the property/review area. Delineation maps must be no larger than 11x17 and should contain the following: (Corps signature of submitted survey plats will occur after the submitted delineation map has been reviewed and approved).⁶

- North Arrow
- Graphical Scale
- Boundary of Review Area
- Date
- Location of data points for each Wetland Determination Data Form or tributary assessment reach.

For Approved Jurisdictional Determinations:

- Jurisdictional wetland features should be labeled as Wetland Waters of the US, 404 wetlands, etc. Please include the acreage of these features.
- Jurisdictional non-wetland features (i.e. tidal/navigable waters, tributaries, impoundments) should be labeled as Non-Wetland Waters of the US, stream, tributary, open water, relatively permanent water, pond, etc. Please include the acreage or linear length of each of these features as appropriate.
- Isolated waters, waters that lack a significant nexus to navigable waters, or nonjurisdictional upland features should be identified as Non-Jurisdictional. Please include a justification in the label regarding why the feature is non-jurisdictional (i.e. "Isolated", "No Significant Nexus", or "Upland Feature"). Please include the acreage or linear length of these features as appropriate.

For Preliminary Jurisdictional Determinations:

 Wetland and non-wetland features should not be identified as Jurisdictional, 404, Waters of the United States, or anything that implies jurisdiction. These features can be identified as Potential Waters of the United States, Potential Non-wetland Waters of the United States, wetland, stream, open water, etc. Please include the acreage and linear length of these features as appropriate.

Completed Wetland Determination Data Forms for appropriate region (at least one wetland and one upland form needs to be completed for each wetland type)

⁶ Please refer to the guidance document titled "Survey Standards for Jurisdictional Determinations" to ensure that the supplied map meets the necessary mapping standards. <u>http://www.saw.usace.army.mil/Missions/Regulatory-Permit-Program/Jurisdiction/</u>

Jurisdictional Determination Request

\checkmark	 Completed appropriate Jurisdictional Determination form <u>PJDs</u>, please complete a <u>Preliminary Jurisdictional Determination Form⁷</u> and include the <u>Aquatic Resource Table</u> <u>AJDs</u>, please complete an <u>Approved Jurisdictional Determination Form⁸</u>
\checkmark	Vicinity Map
\checkmark	Aerial Photograph
\checkmark	USGS Topographic Map
\checkmark	Soil Survey Map
	Other Maps, as appropriate (e.g. National Wetland Inventory Map, Proposed Site Plan, previous delineation maps, LIDAR maps, FEMA floodplain maps)
\checkmark	Landscape Photos (if taken)
	NCSAM and/or NCWAM Assessment Forms and Rating Sheets
\checkmark	NC Division of Water Resources Stream Identification Forms
	Other Assessment Forms

⁷ www.saw.usace.army.mil/Portals/59/docs/regulatory/regdocs/JD/RGL_08-02_App_A_Prelim_JD_Form_fillable.pdf
 ⁸ Please see http://www.saw.usace.army.mil/Missions/Regulatory-Permit-Program/Jurisdiction/

Principal Purpose: The information that you provide will be used in evaluating your request to determine whether there are any aquatic resources within the project area subject to federal jurisdiction under the regulatory authorities referenced above.

Routine Uses: This information may be shared with the Department of Justice and other federal, state, and local government agencies, and the public, and may be made available as part of a public notice as required by federal law. Your name and property location where federal jurisdiction is to be determined will be included in the approved jurisdictional determination (AJD), which will be made available to the public on the District's website and on the Headquarters USAGE website.

Disclosure: Submission of requested information is voluntary; however, if information is not provided, the request for an AJD cannot be evaluated nor can an AJD be issued.

Banner Farms Mitigation Site – Parcel Information

Parcel Information:

PIN: 9630826726

Street Address: 60 Banner Farm Road Mills River, NC 28759

Property Owner Information: Mitchell W. & Wendy L. Gaither 60 Banner Farm Road Mills River, NC 28759

Parcel Information:

PIN: 9630924395

Street Address: 56 Banner Farm Road Mills River, NC 28759

Property Owner Information: Mountain Bean Holdings, Inc. PO Box 637 Horse Shoe, NC 28742

Parcel Information:

PIN: 9630912884

Street Address:

52 Banner Farms Road Mills River, NC 28759

Property Owner Information: Vine Ripe Investments, Inc. PO Box 609 Horse Shoe, NC 28742

Parcel Information:

PIN: 9640028341

Street Address:

SR1314 on Banner Farm Road (No Address Assigned) Mills River, NC 28759 Property Owner Information: Mountain Bean Holdings, Inc. PO Box 637 Horse Shoe, NC 28742

Parcel Information:

PIN: 9630919204

Street Address:

SR1314 on Banner Farm Road (No Address Assigned) Mills River, NC 28759

Property Owner Information:

Kirby E. & Sherri L. Johnson 207 E Price Street Hendersonville, NC 28739

Parcel Information:

PIN: 9630900480

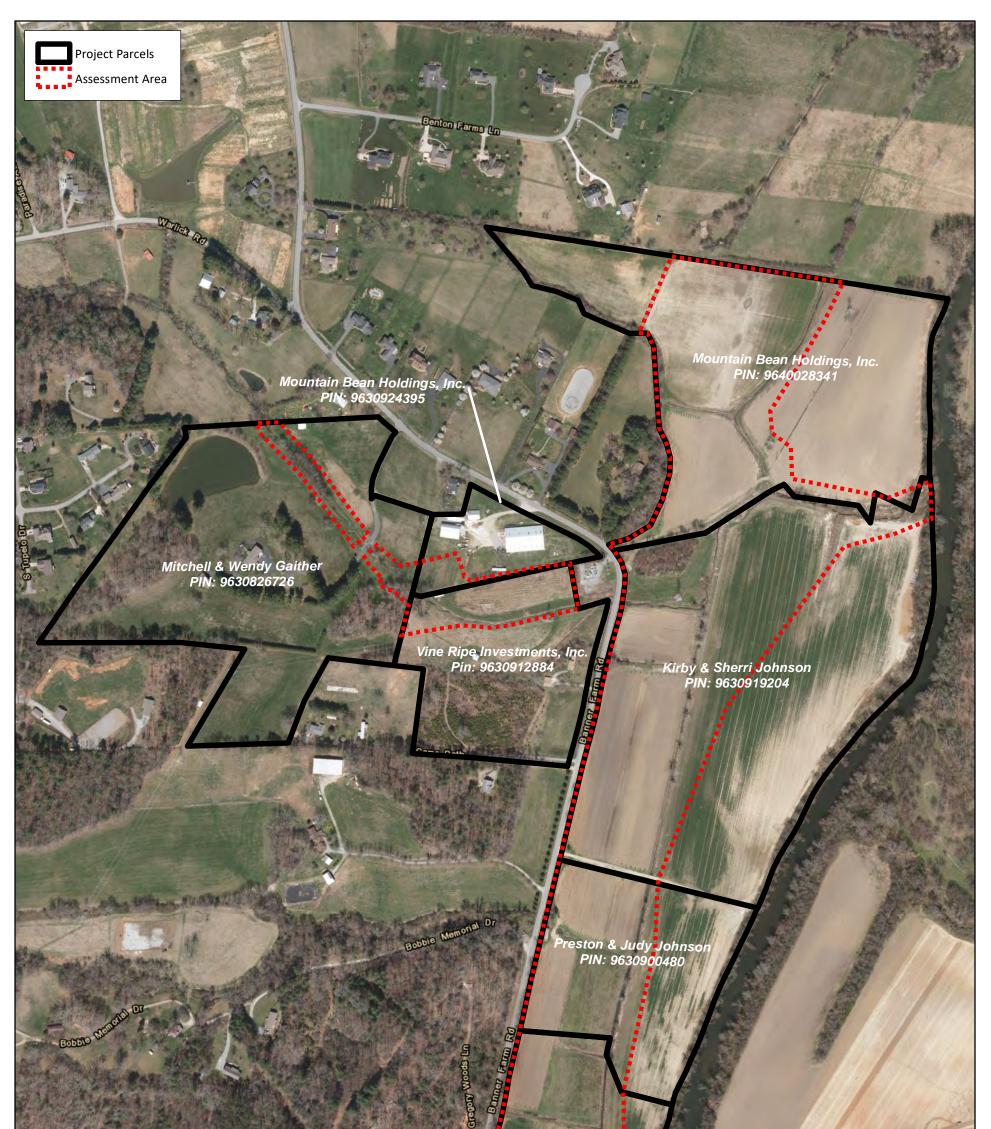
Street Address:

SR1314 on Banner Farm Road (No Address Assigned) Mills River, NC 28759

Property Owner Information:

Preston P. & Judy K. Johnson PO Box 901177 Homestead, FL 33090

Parcel Information:


PIN: 9539895929

Street Address:

SR1314 on Banner Farm Road (No Address Assigned) Mills River, NC 28754

Property Owner Information:

Kirby E. & Sherri L. Johnson 207 E Price Street Hendersonville, NC 28739

Kirby & Sherri Johnson PIN: 9539895929

0	175	350	525	700 Feet

Parcel Map Banner Farm Mitigation Site French Broad 06010105 Henderson County, NC 8/21/2019

WARNING: THIS IS NOT A SURVEY

Parcel	Inform	ation	

REID:	1017536	Pin:	9630826726
Listed to:	GAITHER, MITCHELL W;GAITHER, WENDY L	Neighborhood:	ETOWAH/ HORSESHOE (C)
Mailing Address:	60 BANNER FARM RD	Township:	Mills River
Mailing City, State, Zip:	MILLS RIVER, NC 28759	Municipality:	
Physical Address:	60 BANNER FARM RD	Tax District:	ETOWAH - HORSE SHOE FIRE
Deed:	001598/00219	Plat:	SLD 9217
Date Recorded:	2014-11-25 00:01:00.0	Elementary School District:	MILLS RIVER
Revenue Stamps:	0	Middle School District:	RUGBY MIDDLE
County Zoning:	R2,R2R	High School District:	WEST HIGH
Property Description:	SR1314 ON BANNER FARM RD BMSLD-9217	Soil:	
Map Sheet:	9630.00	Voting Precinct:	Mills River South
Assessed Acreage:	29.55000000	Commissioner District	3
Building Value:	\$437,400.00	Agricultural District	None Found
Land Value:	\$296,600.00	North Carolina House District	117
Value To Be Billed:	\$734,000.00	U.S. House District	11
North Carolina Senate District	48	Flood Zone:	Zone X, Not Shaded (Areas outside of the floodplain),Zone AE, 1% (100 Year Floodplain),Zone X, Shaded, 0.2% (500 Year Floodplain)

Henderson County Geographic Information Systems (GIS) 200 North Grove Street Hendersonville, NC 28792 P: (828) 698-5124 F: (828) 698-5122

THIS IS NOT A SURVEY.

WARNING: THIS IS NOT A SURVEY

Parce	el Information	

REID:	1017435	Pin:	9630924395
Listed to:	MOUNTAIN BEAN HOLDINGS, INC.	Neighborhood:	ETOWAH/ HORSESHOE (C)
Mailing Address:	PO BOX 637	Township:	Mills River
Mailing City, State, Zip:	HORSE SHOE, NC 28742	Municipality:	
Physical Address:	56 BANNER FARM RD	Tax District:	ETOWAH - HORSE SHOE FIRE
Deed:	003150/00641	Plat:	SLD 9217
Date Recorded:	2018-01-05 16:30:00.0	Elementary School District:	MILLS RIVER
Revenue Stamps:	0	Middle School District:	RUGBY MIDDLE
County Zoning:	R2	High School District:	WEST HIGH
Property Description:	SR1314 ON BANNER FARM RD BMSLD-9217	Soil:	
Map Sheet:	9630.00	Voting Precinct:	Mills River South
Assessed Acreage:	4.25000000	Commissioner District	3
Building Value:	\$29,200.00	Agricultural District	French Broad
Land Value:	\$40,500.00	North Carolina House District	117
Value To Be Billed:	\$69,700.00	U.S. House District	11
North Carolina Senate District	48	Flood Zone:	Zone X, Not Shaded (Areas outside of the floodplain),Zone AE, 1% (100 Year Floodplain),Zone X, Shaded,

HENDERSON CTUNTY

Henderson County Geographic Information Systems (GIS) 200 North Grove Street Hendersonville, NC 28792 P: (828) 698-5124 F: (828) 698-5122

THIS IS NOT A SURVEY.

All information or data provided, whether subscribed, purchased or otherwise distributed, whether in hard copy or digital media, shall be at the user's own risk. Henderson County makes no warranties or guarantees, including the warranties of merchantability or of fitness for a particular purpose. Map data is not appropriate for, and is not to be used as, a geodetic, legal, or engineering base system. The data is not intended as a substitute for surveyed locations such as can be determined by a registered Public Land Surveyor, and does not meet the minimum accuracy standards of a Land Information System/Geographic Information System Survey in North Carolina (21 NCAC 56.1608).

0.2% (500 Year Floodplain)

WARNING: THIS IS NOT A SURVEY

Darcol	Information

REID:	9934020	Pin:	9630912884
Listed to:	VINE RIPE INVESTMENTS, INC.	Neighborhood:	ETOWAH/ HORSESHOE (C)
Mailing Address:	PO BOX 609	Township:	Mills River
Mailing City, State, Zip:	HORSE SHOE, NC 28742	Municipality:	
Physical Address:	52 BANNER FARM RD	Tax District:	ETOWAH - HORSE SHOE FIRE
Deed:	003150/00631	Plat:	Not Available
Date Recorded:	2018-01-05 16:27:00.0	Elementary School District:	MILLS RIVER
Revenue Stamps:	0	Middle School District:	RUGBY MIDDLE
County Zoning:	R2R	High School District:	WEST HIGH
Property Description:	SR1314 ON BANNER FARM RD	Soil:	
Map Sheet:	9630.00	Voting Precinct:	Mills River South
Assessed Acreage:	12.52000000	Commissioner District	3
Building Value:	\$94,100.00	Agricultural District	French Broad
Land Value:	\$87,600.00	North Carolina House District	117
Value To Be Billed:	\$181,700.00	U.S. House District	11
North Carolina Senate District	48	Flood Zone:	Zone X, Not Shaded (Areas outside of the floodplain),Zone AE, 1% (100 Year Floodplain),Zone X, Shaded,

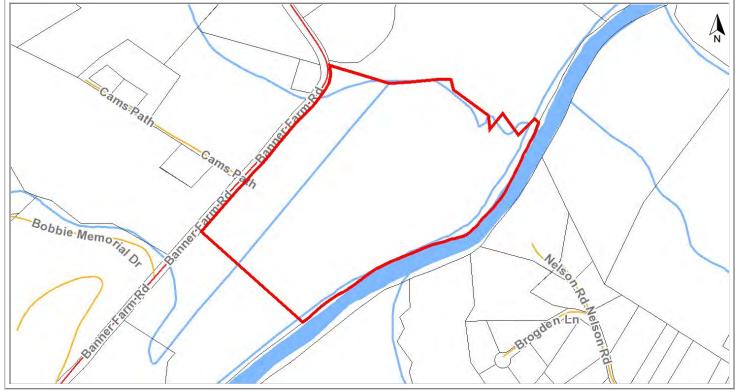
0.2% (500 Year Floodplain)

Henderson County Geographic Information Systems (GIS) 200 North Grove Street Hendersonville, NC 28792 P: (828) 698-5124 F: (828) 698-5122

THIS IS NOT A SURVEY.

WARNING: THIS IS NOT A SURVEY

Darcal	Inform	ation	


REID:	802562	Pin:	9640028341
Listed to:	MOUNTAIN BEAN HOLDINGS, INC.	Neighborhood:	MILLS RIVER R/30
Mailing Address:	PO BOX 637	Township:	Mills River
Mailing City, State, Zip:	HORSE SHOE, NC 28742	Municipality:	
Physical Address:	0 NO ADDRESS ASSIGNED	Tax District:	ETOWAH - HORSE SHOE FIRE
Deed:	003150/00641	Plat:	Not Available
Date Recorded:	2018-01-05 16:30:00.0	Elementary School District:	MILLS RIVER
Revenue Stamps:	0	Middle School District:	RUGBY MIDDLE
County Zoning:	R2	High School District:	WEST HIGH
Property Description:	SR1314 ON LADSON RD	Soil:	
Map Sheet:	9640.00	Voting Precinct:	Mills River South
Assessed Acreage:	30.68000000	Commissioner District	3
Building Value:	\$0.00	Agricultural District	French Broad
Land Value:	\$232,000.00	North Carolina House District	117
Value To Be Billed:	\$232,000.00	U.S. House District	11
North Carolina Senate District	48	Flood Zone:	Zone X, Not Shaded (Areas outside of the floodplain),Zone AE, 1% (100 Year Floodplain),Floodway Areas in Zone AE Zone X, Shaded 0.2%

Zone AE, Zone X, Shaded, 0.2% (500 Year Floodplain)

Henderson County Geographic Information Systems (GIS) 200 North Grove Street Hendersonville, NC 28792 P: (828) 698-5124 F: (828) 698-5122

THIS IS NOT A SURVEY.

WARNING: THIS IS NOT A SURVEY

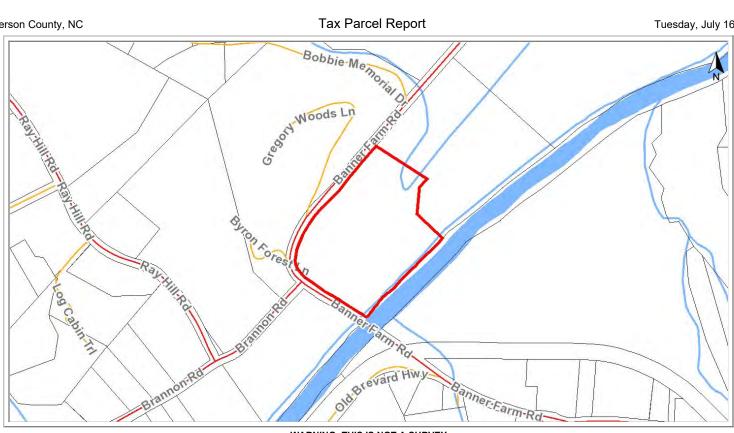
Parce	I Information	ı

REID:	9901818	Pin:	9630919204
Listed to:	JOHNSON, KIRBY E;JOHNSON, SHERRI L	Neighborhood:	ETOWAH/ HORSESHOE (C)
Mailing Address:	207 E PRICE ST	Township:	Mills River
Mailing City, State, Zip:	HENDERSONVLLE, NC 28739	Municipality:	
Physical Address:	0 NO ADDRESS ASSIGNED	Tax District:	ETOWAH - HORSE SHOE FIRE
Deed:	000831/00023	Plat:	Not Available
Date Recorded:	1993-10-15 00:02:00.0	Elementary School District:	MILLS RIVER
Revenue Stamps:	123	Middle School District:	RUGBY MIDDLE
County Zoning:	R2,R2R	High School District:	WEST HIGH
Property Description:	SR1314 BANNER FARM RD ON	Soil:	
Map Sheet:	9630.00	Voting Precinct:	Mills River South
Assessed Acreage:	40.97000000	Commissioner District	3
Building Value:	\$0.00	Agricultural District	French Broad
Land Value:	\$229,300.00	North Carolina House District	117
Value To Be Billed:	\$229,300.00	U.S. House District	11
North Carolina Senate District	48	Flood Zone:	Zone AE, 1% (100 Year Floodplain),Floodway Areas in Zone AE,Zone X, Shaded, 0.2% (500 Year Floodplain)

Henderson County Geographic Information Systems (GIS) 200 North Grove Street Hendersonville, NC 28792 P: (828) 698-5124 F: (828) 698-5122

THIS IS NOT A SURVEY.

WARNING: THIS IS NOT A SURVEY


Parcel Information

REID:	9901591	Pin:	9630900480
Listed to:	JOHNSON, PRESTON P;JOHNSON, JUDY K	Neighborhood:	ETOWAH/ HORSESHOE (C)
Mailing Address:	PO BOX 901177	Township:	Mills River
Mailing City, State, Zip:	HOMESTEAD, FL 33090	Municipality:	
Physical Address:	0 NO ADDRESS ASSIGNED	Tax District:	ETOWAH - HORSE SHOE FIRE
Deed:	000849/00853	Plat:	Not Available
Date Recorded:	1994-08-03 00:02:00.0	Elementary School District:	MILLS RIVER
Revenue Stamps:	44	Middle School District:	RUGBY MIDDLE
County Zoning:	R2R	High School District:	WEST HIGH
Property Description:	SR1314 ON BANNER FM RD	Soil:	
Map Sheet:	9630.00	Voting Precinct:	Mills River South
Assessed Acreage:	13.74000000	Commissioner District	3
Building Value:	\$0.00	Agricultural District	None Found
Land Value:	\$77,800.00	North Carolina House District	117
Value To Be Billed:	\$77,800.00	U.S. House District	11
North Carolina Senate District	48	Flood Zone:	Zone AE, 1% (100 Year Floodplain),Floodway Areas in Zone AE

Henderson County Geographic Information Systems (GIS) 200 North Grove Street Hendersonville, NC 28792 P: (828) 698-5124 F: (828) 698-5122

THIS IS NOT A SURVEY.

WARNING: THIS IS NOT A SURVEY

Parcel	Inform	mation	

REID:	1013093	Pin:	9539895929
Listed to:	JOHNSON, KIRBY E;JOHNSON, SHERRI L	Neighborhood:	ETOWAH/ HORSESHOE (C)
Mailing Address:	207 PRICE STREET	Township:	Mills River
Mailing City, State, Zip:	HENDERSONVLLE, NC 28739	Municipality:	
Physical Address:	0 NO ADDRESS ASSIGNED	Tax District:	ETOWAH - HORSE SHOE FIRE
Deed:	001426/00625	Plat:	SLD 8040
Date Recorded:	2010-04-21 00:02:00.0	Elementary School District:	MILLS RIVER
Revenue Stamps:	0	Middle School District:	RUGBY MIDDLE
County Zoning:	R2R	High School District:	WEST HIGH
Property Description:	SR1331 ON BANNER FARM RD BMSLD-8040	Soil:	
Map Sheet:	9539.00	Voting Precinct:	Mills River South
Assessed Acreage:	12.61000000	Commissioner District	3
Building Value:	\$0.00	Agricultural District	French Broad
Land Value:	\$107,200.00	North Carolina House District	117
Value To Be Billed:	\$107,200.00	U.S. House District	11
North Carolina Senate District	48	Flood Zone:	Zone AE, 1% (100 Year Floodplain),Floodway Areas in Zone AE,Zone X, Shaded, 0.2% (500 Year Floodplain)

THIS IS NOT A SURVEY.

PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR PJD: 8/9/2019

B. NAME AND ADDRESS OF PERSON REQUESTING PJD: Wildlands Engineering, Inc., Jordan Hessler, 167-B Haywood Road, Asheville, NC 28806

C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Wilmington District, Banner Farm Mitigation Site, N/A

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION: 52 Banner Farms Road, Mills River, NC 28759

(USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR AQUATIC RESOURCES AT DIFFERENT SITES)

State: North CarolinaCounty: HendersonCity: Mills RiverCenter coordinates of site (lat/long in degree decimal format): Latitude: 35.350886 Longitude: -82.556899

Universal Transverse Mercator: UTM 17

Name of nearest waterbody: French Broad River

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

□ Office (Desk) Determination. Date:

 \boxtimes Field Determination. Date(s):6/4/19 – 6/7/19

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TO REGULATORY JURISDICTION.

Site Number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
1.) Banner Creek	35.35539	-82.55942	3,272 LF	Non-wetland waters	Section 404
2.) UT1	35.35356	-82.55421	878 LF	Non-wetland waters	Section 404
3.) UT2	35.34857	-82.55913	1,930 LF	Non-wetland waters	Section 404
4.) Wetland A	35.353209	-82.552293	0.54	Wetland waters	Section 404
5.) Wetland B	35.351927	-82.554840	0.09	Wetland waters	Section 404
6.) Wetland C	35.351520	-82.556267	0.004	Wetland waters	Section 404
7.) Wetland D	35.350908	-82.556404	0.17	wetland waters	Section 404
8.) Wetland E	35.350698	-82.556398	0.003	Wetland waters	Section 404
9.) Wetland F	35.349546	-82.557627	0.03	Wetland waters	Section 404
10.) Wetland G	35.348435	-82.559495	0.01	Wetland waters	Section 404
11.) Wetland H	35.347386	-82.559793	0.13	Wetland waters	Section 404

Site Number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non- wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
12.) Wetland I	35.346085	-82.561050	0.02	Wetland waters	Section 404
13.) Wetland J	35.346677	-82.560354	0.11	Wetland waters	Section 404
14.) Wetland K	35.345746	-82.561251	0.16	Wetland waters	Section 404
15.) Wetland L	35.345256	-82.560874	0.04	Wetland waters	Section 404
16.) Wetland M	35.353680	-82.559013	0.003	Wetland waters	Section 404
17.) Wetland N	35.353641	-82.559056	0.003	Wetland waters	Section 404
18.) Wetland O	35.353030	-82.558640	0.01	Wetland waters	Section 404
19.) Wetland P	35.352911	-82.558349	0.01	Wetland waters	Section 404
20.) Wetland Q	35.352746	-82.558248	0.14	Wetland waters	Section 404
21.) Wetland R	35.352391	-82.558560	0.15	Wetland waters	Section 404
22.) Wetland S	35.352292	-82.557848	1.62	Wetland waters	Section 404
23.) Wetland T	35.352990	-82.558923	0.04	Wetland waters	Section 404
24.) Wetland U	35.353294	-82.558995	0.04	Wetland waters	Section 404
25.) Wetland V	35.355278	-82.559389	0.004	Wetland waters	Section 404
25.) Wetland W	35.353934	-82.552684	0.28	Wetland waters	Section 404
26.) Open Water 1	35.34724	-82.559173	0.40	Non-wetland waters	Section 404

1) The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.

2) In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General

Permit (NWP) or other general permit verification requiring "pre- construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)

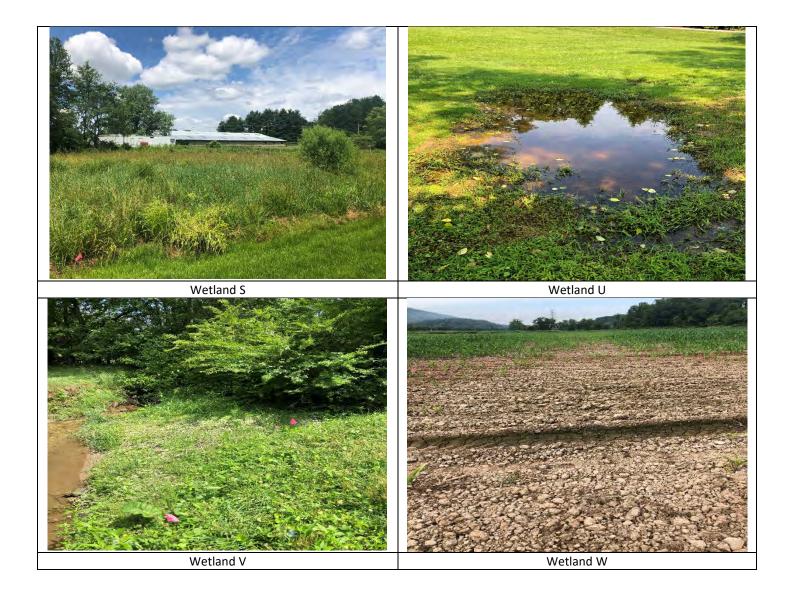
Checked items should be included in subject file. Appropriately reference sources below where indicated for all checked items:

Maps, plans, plots or plat submitted by or on behalf of the PJD requestor: Map: <u>GIS figures including Vicinity, USGS Topographic, Delineation, & Soils</u>
Data sheets prepared/submitted by or on behalf of the PJD requestor.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report. Rationale:
Data sheets prepared by the Corps:
Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas:
USGS NHD data.
USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale & quad name: <u>1:24,000 Scale Horse Shoe quadrangle</u>
X Natural Resources Conservation Service Soil Survey. Citation: NRCS Web Soil Survey Website
National wetlands inventory map(s). Cite name:
State/local wetland inventory map(s):
FEMA/FIRM maps:
100-year Floodplain Elevation is: (National Geodetic Vertical Datum of 1929)
Photographs: Aerial (Name & Date): 2015 aerial on GIS figures with submittal.
or Other (Name & Date): <u>Representative site photos with submittal.</u>
Previous determination(s). File no. and date of response letter:
Other information (please specify):

IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

Signature and date of Regulatory staff member completing PJD **DATE**

Signature and date of person requesting PJD


Signature and date of person requesting PJD (REQUIRED, unless obtaining the signature is impracticable)¹

¹ Districts may establish timeframes for requester to return signed PJD forms. If the requester does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

U.S. Army Corps of Engineers
WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region
See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Banne	er Farm	Mitigation Site			City/C	ounty: Henderson			Sampling Date:	6-5-19
Applicant/Owner:	Wildla	ınds Engineerii	ng, Inc.				State	: NC	Sampling Point:	DP1
Investigator(s): Jord	dan Hess	sler			Section, T	ownship, Range: <u>N</u>	I/A			
Landform (hillside, te	errace, e	tc.): HillIside			Local relief (c	oncave, convex, no	ne): conc	ave	Slope (%):	0%
Subregion (LRR or M	/LRA):	LRR N, MLRA	130B L	at: <u>35.342990</u>		Long: <u>-82</u>	.558923		Datum:	NAD 83
Soil Map Unit Name	: Codor	us Loam (Co)					NW	l classifica	ation:	
Are climatic / hydrolo	ogic con	ditions on the s	ite typica	I for this time of	year?	Yes X	No	(If no,	explain in Remark	s.)
Are Vegetation x	, Soil	x_, or Hyd	rology	x significantly	y disturbed?	Are "Normal Circ	umstance	s" present	? Yes <u>x</u>	No
Are Vegetation	, Soil	, or Hyd	rology	naturally pr	oblematic?	(If needed, expla	in any ans	wers in R	emarks.)	
								_		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	х	No	Is the Sampled Area			
Hydric Soil Present?	Yes	Х	No	within a Wetland?	Yes	Х	No
Wetland Hydrology Present?	Yes	Х	No				

Remarks:

Sampling point is in a seep next to an intermittent stream. The data point is for wetlands M, N, O, P, T, U, and V. Data point was taken in wetland T. The sampling point is in a manipulated area where the floodplain was filled, and the vegetation is continuously maintained. These factors attribute to the disturbance of vegetation, soils, and hydrology.

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is requ	ired; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	x True Aquatic Plants (B14)	x Sparsely Vegetated Concave Surface (B8)
X High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
x Saturation (A3)	x Oxidized Rhizospheres on Living Roots (C3)	Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	x Crayfish Burrows (C8)	
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)		x Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B	37)	Shallow Aquitard (D3)
x Water-Stained Leaves (B9)		Microtopographic Relief (D4)
Aquatic Fauna (B13)		X FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No x Depth (inches):	
Water Table Present? Yes x	No Depth (inches): 8	
Saturation Present? Yes x	No Depth (inches): 1 Wetla	nd Hydrology Present? Yes X No
(includes capillary fringe)		
Describe Recorded Data (stream gauge, m	onitoring well, aerial photos, previous inspections),	if available:
Describe Recorded Data (stream gauge, m	onitoring well, aerial photos, previous inspections),	if available:
Describe Recorded Data (stream gauge, m	onitoring well, aerial photos, previous inspections),	if available:
Describe Recorded Data (stream gauge, m Remarks:	onitoring well, aerial photos, previous inspections),	if available:
	onitoring well, aerial photos, previous inspections),	if available:
	onitoring well, aerial photos, previous inspections),	if available:
	onitoring well, aerial photos, previous inspections),	if available:
	onitoring well, aerial photos, previous inspections),	if available:
	onitoring well, aerial photos, previous inspections),	if available:
	onitoring well, aerial photos, previous inspections),	if available:
	onitoring well, aerial photos, previous inspections),	if available:

Sampling Point: DP1

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30)	% Cover	Species?	Status	Dominance Test worksheet:
1. Clethra acuminata	30	Yes		Number of Dominant Species
2. Acer spicatum	20	Yes	FACU	That Are OBL, FACW, or FAC: 5 (A)
3. Betula nigra	10	No	FACW	Total Number of Dominant
4. Oxydendrum arboreum	5	No	UPL	Species Across All Strata: 9 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 55.6% (A/B)
				Prevalence Index worksheet:
7		T-tal Caver		
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 33	20%	of total cover:	13	OBL species 10 x 1 = 10
Sapling/Shrub Stratum (Plot size: 15)				FACW species <u>15</u> x 2 = <u>30</u>
1. Oxydendrum arboreum	5	Yes	UPL	FAC species 20 x 3 = 60
2				FACU species 20 x 4 = 80
3.				UPL species 10 x 5 = 50
4.			·	Column Totals: 75 (A) 230 (B)
5.				Prevalence Index = $B/A = 3.07$
6.		·		Hydrophytic Vegetation Indicators:
7		. <u></u>		1 - Rapid Test for Hydrophytic Vegetation
8		. <u> </u>		X 2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
	5	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 3	20%	of total cover:	1	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Microstegium vimineum	15	Yes	FAC	¹ Indicators of hydric soil and wetland hydrology must be
2. Sparganium	5	Yes	OBL	present, unless disturbed or problematic.
3. Thelypteris novboracensis	5	Yes	FAC	Definitions of Four Vegetation Strata:
4. Sagittaria latifolia	5	Yes	OBL	-
	5			Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
5. Impatiens capensis		Yes	FACW	height.
6. <u>Fescue</u>	5	Yes		noig
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	40	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 20		of total cover:	8	height.
Woody Vine Stratum (Plot size: 5)		01 10101 0010		
1		. <u></u>		
2.				
3				
4.				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

	• •					ator or co	onfirm the abs	ence of Indic	alors.)	
Depth	Matrix			x Featur		. 2				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remar	ks
0-10	10YR 3/1	95	7.5YR 4/6	5	D	PL	Loamy/Clay	/ey		
10-15	10YR 5/1	95	7.5YR 5/8	5	D	Μ	Loamy/Clay	/ey		
1							2.			
	oncentration, D=Depl	etion, RN	Reduced Matrix, N	//S=Mas	ked Sand	d Grains.	-Lc		ore Lining, M=	
Hydric Soil I					r (00				or Problematio	-
Histosol			Polyvalue B		`	, .			uck (A10) (MLR	
	pipedon (A2)		Thin Dark S				-		rairie Redox (A	16)
Black His	. ,		Loamy Mucl	•		/LRA 136	5)	•	A 147, 148)	
	n Sulfide (A4)		Loamy Gley		· · /				nt Floodplain S	oils (F19)
	l Layers (A5)		Depleted Ma					-	A 136, 147)	
2 cm Mu	ck (A10) (LRR N)		Redox Dark		. ,			Red Par	ent Material (F	21)
x Depleted	Below Dark Surface	e (A11)	Depleted Da	ark Surfa	ice (F7)			(outsi	de MLRA 127,	147, 148)
Thick Da	ark Surface (A12)		Redox Depr		· · ·			Very Sh	allow Dark Sur	ace (F22)
Sandy M	lucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	٨,	Other (E	xplain in Rema	arks)
Sandy G	ileyed Matrix (S4)		MLRA 13	6)						
Sandy R	edox (S5)		Umbric Surf	ace (F13	B) (MLRA	122, 136	6)	³ Indicators o	f hydrophytic v	egetation and
Stripped	Matrix (S6)		Piedmont FI	oodplair	n Soils (F	19) (MLR	A 148)	wetland	hydrology mus	t be present,
Dark Sur	face (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless d	listurbed or pro	blematic.
Restrictive L	_ayer (if observed):									
Type:	,									
Depth (ir	nches):						Hydric Soil	Present?	Yes X	No
• •	,						-			······

U.S. Army Corps of WETLAND DETERMINATION DATA SHEET – Ea See ERDC/EL TR-07-24; the propo	astern Mount	ains and Piedmont Regi	on	Requ	iirement	ŧ: 0710-xxxx, Exp: F Control Symbol EX R 335-15, paragrapi	EMPT:
Project/Site: Banner Farm Mitigation Site		City/County: Henders	on			Sampling Date:	6-5-19
Applicant/Owner: Wildlands Engineering, Inc.				State:	NC	Sampling Point:	DP2
Investigator(s): Jordan Hessler		Section, Township, Range	e: N/A				
Landform (hillside, terrace, etc.): Hillside	Lo	ocal relief (concave, convex	, none):	None		Slope (%):	2%
Subregion (LRR or MLRA): LRR N, MLRA 130B Lat:	35.353452	Long:	-82.5586	627		Datum:	NAD 83
Soil Map Unit Name: <u>Codorus Ioam (Co)</u>				NWI c	assifica	tion:	
Are climatic / hydrologic conditions on the site typical for	this time of ye	ar? Yes <u>X</u>	No		(If no, e	explain in Remark	s.)
Are Vegetation <u>X</u> , Soil <u>X</u> , or Hydrology <u>X</u>	significantly di	sturbed? Are "Normal	Circumst	tances"	oresent	Yes X	No
Are Vegetation, Soil, or Hydrology	naturally probl	ematic? (If needed, ex	xplain an	iy answe	ers in Re	marks.)	
SUMMARY OF FINDINGS – Attach site ma	p showing s	sampling point locat	ions, t	ransed	cts, im	portant featu	res, etc.
Hydrophytic Vegetation Present?YesHydric Soil Present?YesWetland Hydrology Present?Yes		Is the Sampled Area within a Wetland?		Yes		No <u>X</u>	
Remarks: The sampling point is in a large mowed lawn. The sam continuously maintained. These factors attribute to the	pling point is in	•		dplain wa	as filled,	and the vegetatic	on is
HYDROLOGY							

Wetland Hydrology Indicators:			Secondary Indicators (m	ninimum of tw	o required)	
Primary Indicators (minimum of or	ne is required; check all that apply)		Surface Soil Cracks (B6)			
Surface Water (A1)	True Aquatic Plants (B14)		Sparsely Vegetated Concave Surface (B8)			
High Water Table (A2)	Drainage Patterns (B10)				
Saturation (A3)	Oxidized Rhizospheres on Living	g Roots (C3)	Moss Trim Lines (B	16)		
Water Marks (B1)	Presence of Reduced Iron (C4)		Dry-Season Water	Table (C2)		
Sediment Deposits (B2)	Recent Iron Reduction in Tilled	Soils (C6)	Crayfish Burrows (C	28)		
Drift Deposits (B3)	Thin Muck Surface (C7)		Saturation Visible o	n Aerial Imag	ery (C9)	
Algal Mat or Crust (B4)	Other (Explain in Remarks)		Stunted or Stressed	l Plants (D1)		
Iron Deposits (B5)	—		Geomorphic Positio	on (D2)		
Inundation Visible on Aerial Im	nagery (B7)		Shallow Aquitard (D	03)		
Water-Stained Leaves (B9)			Microtopographic Relief (D4)			
Aquatic Fauna (B13)			FAC-Neutral Test (I	J5)		
Field Observations:						
Surface Water Present? Yes	No x Depth (inches):					
Water Table Present? Yes	No x Depth (inches):	-				
Saturation Present? Yes	No x Depth (inches):	Wetland	Hydrology Present?	Yes	No x	
(includes capillary fringe)		—				
Describe Recorded Data (stream g	gauge, monitoring well, aerial photos, previous i	nspections), if a	available:			
Remarks:						
No hydrologic Indicators present.						

Sampling Point:

DP2

Tree Stratum (Plot size:)		Indicator Status	Dominance Test worksheet:
1			Number of Dominant Species
2			That Are OBL, FACW, or FAC:0 (A)
3 4.			Total Number of Dominant Species Across All Strata: 1 (B)
5.			Percent of Dominant Species
6.			That Are OBL, FACW, or FAC: 0.0% (A/B)
7.			Prevalence Index worksheet:
	=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20% of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)		FACW species 0 x 2 = 0
1			FAC species 0 x 3 = 0
2.			FACU species 0 x 4 = 0
3.			UPL species 0 x 5 = 0
4.			Column Totals: 0 (A) 0 (B)
5.			Prevalence Index = B/A =
6.			Hydrophytic Vegetation Indicators:
7.			1 - Rapid Test for Hydrophytic Vegetation
8.			2 - Dominance Test is >50%
9.			$3 - Prevalence Index is \le 3.0^1$
·	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20% of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)			Problematic Hydrophytic Vegetation ¹ (Explain)
1. <i>Fescue</i>	90 Yes		¹ Indicators of hydric soil and wetland hydrology must be
2.			present, unless disturbed or problematic.
3.			Definitions of Four Vegetation Strata:
4.			Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.			more in diameter at breast height (DBH), regardless of
6.			height.
7.			Sapling/Shrub – Woody plants, excluding vines, less
8.			than 3 in. DBH and greater than or equal to 3.28 ft
9.			(1 m) tall.
10 11.			Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	90 =Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:	45 20% of total cover:	18	height.
Woody Vine Stratum (Plot size:)			
1.			
2.			
3.			
4.			
5.			
	=Total Cover		Hydrophytic
50% of total cover:	20% of total cover:		Vegetation Present? Yes No x
Remarks: (Include photo numbers here or on a sep	arate sheet.)		

SOIL

Depth	Matrix	[Redox	Feature	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	·	Remarks
0-10	10YR 4/6	100					Loamy/Cla	yey	
						·			
		·				·			
						·			
1		epletion, RM	=Reduced Matrix, N	IS=Mas	ked Sanc	Grains.	² L		Pore Lining, M=Matrix.
lydric Soil	Indicators:							Indicators f	or Problematic Hydric S
Histoso	ol (A1)		Polyvalue Be	low Su	face (S8)	(MLRA	147, 148)	2 cm M	uck (A10) (MLRA 147)
Histic E	Epipedon (A2)		Thin Dark Su	Irface (S	69) (MLR	A 147, 14	48)	Coast P	rairie Redox (A16)
Black H	listic (A3)		Loamy Muck	y Miner	al (F1) (N	LRA 136	5)	(MLR	A 147, 148)
Hydrog	en Sulfide (A4)		Loamy Gleye	d Matri	x (F2)			Piedmo	nt Floodplain Soils (F19)
Stratifie	ed Layers (A5)		Depleted Ma	trix (F3)				(MLR	A 136, 147)
2 cm M	uck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Par	rent Material (F21)
Deplete	ed Below Dark Surfa	ace (A11)	Depleted Da	rk Surfa	ce (F7)				ide MLRA 127, 147, 148)
	ark Surface (A12)	()	Redox Depre		. ,			•	allow Dark Surface (F22)
	, Mucky Mineral (S1)		Iron-Mangan		. ,	2) (LRR N	١,		Explain in Remarks)
	Gleyed Matrix (S4)		MLRA 136		,	, ,		`	. ,
	Redox (S5)		Umbric Surfa	ice (F13	B) (MLRA	122, 136	5)	³ Indicators o	of hydrophytic vegetation a
	d Matrix (S6)		Piedmont Flo	`	, .				hydrology must be preser
	urface (S7)		Red Parent N	•		<i>,</i> ,			disturbed or problematic.
	Layer (if observed	d):							
Restrictive	G	ravel							
Restrictive Type:								I Present?	Yes No X

U.S. WETLAND DETERMINATION D See ERDC/EL TR-0	ion	OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)						
Project/Site: Banner Farm Mitigatio	n Site		City/County: Henders	son		Samp	ling Date:	6-5-19
Applicant/Owner: Wildlands Eng	neering, Inc.				State: N	IC Samp	ling Point:	DP3
Investigator(s): Jordan Hessler			Section, Township, Rang	e: N/A				
Landform (hillside, terrace, etc.): FI	odplain	L	ocal relief (concave, conve	x, none):	None		Slope (%):	<1%
Subregion (LRR or MLRA): LRR N,	MLRA 130B Lat	35.352149	Long	: <u>-82.5579</u>	40		Datum:	NAD 83
Soil Map Unit Name: Toxaway silt lo	am (To)				NWI class	sification:		
Are climatic / hydrologic conditions or	the site typical fo	or this time of y	ear? Yes X	No	(If	no, explain i	in Remarks	s.)
Are Vegetation <u>X</u> , Soil <u>X</u> , c	r Hydrology X	significantly o	disturbed? Are "Normal	Circumst	ances" pres	sent?	Yes <u>x</u>	No
Are Vegetation, Soil, o	r Hydrology	naturally prot	olematic? (If needed, e	explain an	y answers i	n Remarks.))	
SUMMARY OF FINDINGS -	Attach site ma	ap showing	sampling point loca	tions, tı	ransects	, importa	nt featur	es, etc
Hydrophytic Vegetation Present?	Yes	No x	Is the Sampled Area					
Hydric Soil Present?	Yes	No x	within a Wetland?		Yes	No	х	
Wetland Hydrology Present?	Yes	No x						
Remarks:			-					
O I'	Le substation Theorem	and an I have been as the first first of the	the second secon	and the sector data as	I Ison a serie is a second series			

Sampling point is in banner creek's floodplain. The sampling point is in an area that has been manipulated by mowing, filling of the flood plain, and movement of heavy farm equipment. These factors attribute to the vegetation, soils, and hydrology being significantly disturbed.

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one	is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	Drainage Patterns (B10)	
Saturation (A3)	Oxidized Rhizospheres on Living Root	s (C3) Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils (C6) Crayfish Burrows (C8)
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)		Geomorphic Position (D2)
Inundation Visible on Aerial Ima	gery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)		Microtopographic Relief (D4)
Aquatic Fauna (B13)		FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No x Depth (inches):	
Water Table Present? Yes	No x Depth (inches):	
Saturation Present? Yes	No x Depth (inches):	Wetland Hydrology Present? Yes No x
(includes capillary fringe)		
	uge, monitoring well, aerial photos, previous inspect	tions), if available:
	uge, monitoring well, aerial photos, previous inspec	tions), if available:
	uge, monitoring well, aerial photos, previous inspect	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream ga	uge, monitoring well, aerial photos, previous inspec	tions), if available:

Sampling Point: DP3

Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (/	A)
3				Total Number of Dominant	()
4.					B)
5.				Percent of Dominant Species	
6.					A/B)
7.				Prevalence Index worksheet:	
	:	=Total Cover		Total % Cover of: Multiply by:	_
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0	_
Sapling/Shrub Stratum (Plot size:)			FACW species 0 x 2 = 0	_
1				FAC species 0 x 3 = 0	_
2.				FACU species 0 x 4 = 0	_
3.				UPL species 0 x 5 = 0	_
4.				Column Totals: 0 (A) 0	(B)
5.				Prevalence Index = B/A =	_
6.				Hydrophytic Vegetation Indicators:	_
7.				1 - Rapid Test for Hydrophytic Vegetation	
8.				2 - Dominance Test is >50%	
9.				3 - Prevalence Index is ≤3.0 ¹	
		=Total Cover		4 - Morphological Adaptations ¹ (Provide suppo	orting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)	-
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Fescue	90	Yes		¹ Indicators of hydric soil and wetland hydrology mu	ust he
2.				present, unless disturbed or problematic.	
3.				Definitions of Four Vegetation Strata:	
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 ci	m) or
5.				more in diameter at breast height (DBH), regardles	
6.				height.	
7.				Sapling/Shrub – Woody plants, excluding vines, l	امدد
8.				than 3 in. DBH and greater than or equal to 3.28 ft	
9.				(1 m) tall.	
10.				Herb – All herbaceous (non-woody) plants, regard	lless
11.			·······	of size, and woody plants less than 3.28 ft tall.	
	90	=Total Cover		Woody Vine – All woody vines greater than 3.28 f	ft in
50% of total cover:		of total cover:	18	height.	
Woody Vine Stratum (Plot size:)	10 2070				
1. 2.					
2			·		
4.					
5.					
		Tatal Osuar		Hydrophytic	
50% 64.44		=Total Cover		Vegetation	
50% of total cover:	20%	of total cover:		Present? Yes No x	
Remarks: (Include photo numbers here or on a sep	arate sheet.)				

SOIL

Profile Description: (Describe to	the dep				tor or co	onfirm the ab	sence of ind	licators.)		
Depth Matrix		Redo	k Featur							
(inches) Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rer	narks	
0-15 10YR 4/4	100				<u> </u>	Loamy/Cla	уеу			
					·					
					·					
·					·					
¹ Type: C=Concentration, D=Deple	tion, RM=	Reduced Matrix, N	1S=Masl	ked Sand	Grains.	² L		Pore Lining,		
Hydric Soil Indicators:							Indicators	for Problem	atic Hydric Soils ³ :	
Histosol (A1)		Polyvalue Be	elow Sur	face (S8)	(MLRA	147, 148)	2 cm I	Muck (A10) (N	ILRA 147)	
Histic Epipedon (A2)		Thin Dark Su	urface (S	9) (MLR	A 147, 14	8)	Coast	Coast Prairie Redox (A16)		
Black Histic (A3)		Loamy Muck	y Minera	al (F1) (M	LRA 136)	(ML	RA 147, 148)		
Hydrogen Sulfide (A4)		Loamy Gleye	ed Matrix	x (F2)			Piedm	ont Floodplai	n Soils (F19)	
Stratified Layers (A5)		Depleted Ma	trix (F3)				(ML	RA 136, 147)		
2 cm Muck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red P	arent Materia	l (F21)	
Depleted Below Dark Surface	(A11)	Depleted Da	rk Surfa	ce (F7)			(out	side MLRA 1	27, 147, 148)	
Thick Dark Surface (A12)	()	Redox Depre		()			•		Surface (F22)	
Sandy Mucky Mineral (S1)		Iron-Mangan		. ,		l.		(Explain in Re		
Sandy Gleyed Matrix (S4)		MLRA 136			, (,		(_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sandy Redox (S5)		Umbric Surfa	•) (MLRA	122. 136)	³ Indicators	of hydrophyti	c vegetation and	
Stripped Matrix (S6)		Piedmont Flo						5 1 5	nust be present,	
Dark Surface (S7)		Red Parent I	•	•				disturbed or		
Restrictive Layer (if observed):										
Туре:										
Depth (inches):						Hydric So	il Present?	Yes	<u>No X</u>	
Remarks:										

U.S. Army Corps of Engineers						
WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region						
See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R						

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Banne	r Farm Mitigation Site	City/County: Henderson		Sampling Date: <u>6-5-19</u>
Applicant/Owner:	Wildlands Engineering, Inc.		State: NC	Sampling Point: DP4
Investigator(s): Jorda	an Hessler	Section, Township, Range: <u>N/A</u>		
Landform (hillside, ter	rrace, etc.): Floodplain L	_ocal relief (concave, convex, none): Concave	Slope (%): <1%
Subregion (LRR or M	LRA): <u>LRR N, MLRA 130B</u> Lat: <u>35.352292</u>	Long: -82.55	7848	Datum: NAD 83
Soil Map Unit Name:	Toxaway silt loam (To)		NWI classifi	cation:
Are climatic / hydrolog	gic conditions on the site typical for this time of y	vear? Yes <u>X</u> N	o(lf no	o, explain in Remarks.)
Are Vegetation X	, Soil X , or Hydrology X significantly	disturbed? Are "Normal Circum	istances" prese	nt? Yes <u>x</u> No
Are Vegetation	, Soil, or Hydrology naturally pro	blematic? (If needed, explain a	any answers in	Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes	Х	No	Is the Sampled Area			
Hydric Soil Present?	Yes	Х	No	within a Wetland?	Yes	Х	No
Wetland Hydrology Present?	Yes	Х	No				

Remarks:

Sampling point is within banner creek's floodplain. The sampling point is in an area that has been manipulated by mowing, filling of the flood plain, and movement of heavy farm equipment. These factors attribute to the vegetation, soils, and hydrology being significantly disturbed. The Data point is for wetlands R ,Q, and S. The data point was taken inside wetland S.

HYDROLOGY

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)	
Primary Indicators (minimum of one is requi	Surface Soil Cracks (B6)	
x Surface Water (A1)	Sparsely Vegetated Concave Surface (B8)	
x High Water Table (A2)	Drainage Patterns (B10)	
x Saturation (A3)	x Oxidized Rhizospheres on Living Roots ((C3) Moss Trim Lines (B16)
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Water Table (C2)
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils (C6	6) Crayfish Burrows (C8)
x Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)		Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B	Shallow Aquitard (D3)	
Water-Stained Leaves (B9)		Microtopographic Relief (D4)
x Aquatic Fauna (B13)		X FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes x	No Depth (inches): 1	
Water Table Present? Yes x	No Depth (inches): 1	
Saturation Present? Yes x	No Depth (inches): 1 W	/etland Hydrology Present? Yes X No
(includes capillary fringe)		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspectio	ns), if available:
Remarks:		

Sampling Point: DP4

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size:)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2.				That Are OBL, FACW, or FAC: <u>3</u> (A)
3.				Total Number of Dominant
4				Species Across All Strata: 3 (B)
5				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 20 x 1 = 20
Sapling/Shrub Stratum (Plot size:)				FACW species 50 x 2 = 100
1.				FAC species 0 x 3 = 0
2.				FACU species 0 x 4 = 0
3.		. <u> </u>		UPL species 0 x 5 = 0
4.				Column Totals: 70 (A) 120 (B)
5.		. <u> </u>		Prevalence Index = $B/A = 1.71$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
		·		
8.		. <u> </u>	·······	X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
50% of total cover:	20%	of total cover:		
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Sagittaria latifolia	20	Yes	OBL	¹ Indicators of hydric soil and wetland hydrology must be
2. Juncus effusus	20	Yes	FACW	present, unless disturbed or problematic.
3. Carex lupuliformis	20	Yes	FACW	Definitions of Four Vegetation Strata:
4. Perssicaria sagittata	5	No	FACW	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5. Impatiens capensis	5	No	FACW	more in diameter at breast height (DBH), regardless of
6. Fescue	10	No		height.
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
	80	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 40	20%	of total cover:	16	height.
Woody Vine Stratum (Plot size:)				
1				
2.				
3.				
1				
4 5		·		
···		=Total Cover		Hydrophytic
50% of total appear		of total cover:		Vegetation Present? Yes X No x
50% of total cover:	20%	or total cover.		Present? Yes X No x
Remarks: (Include photo numbers here or on a separ	ate sheet.)			

Depth	Matrix		Redo	x Featur	es						
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0-10	2.5Y 3/1	100					Loamy/Cla	yey			
10-15	5Y 6/1	100					Loamy/Cla	yey			
						·					
						·					
	oncentration, D=Dep	letion, RM	Reduced Matrix, N	/IS=Mas	ked Sand	Grains.	² L	ocation: PL=Pore Lining, M=Matrix.			
Hydric Soil			Debaulus D		f (00)		4.7 4.40	Indicators for Problematic Hydric Soils			
Histosol (A1) Polyvalue Below Surface (S8) (MLRA					•		2 cm Muck (A10) (MLRA 147)				
Histic Epipedon (A2) Thin Dark Surface (S9) (MLRA 147, 1					•	· · · · · · · · · · · · · · · · · · ·					
Black Histic (A3) Loamy Mucky Mineral (F1) (MLRA 13					ILRA 130						
	n Sulfide (A4)		Loamy Gley		• •		Piedmont Floodplain Soils (F19)				
	d Layers (A5)		Depleted Ma	. ,			(MLRA 136, 147)				
	ick (A10) (LRR N)	())	Redox Dark		· · /		Red Parent Material (F21)				
	d Below Dark Surface	e (A11)	Depleted Da		• • •			(outside MLRA 127, 147, 148)			
	ark Surface (A12)		Redox Depr		` '			Very Shallow Dark Surface (F22)			
	lucky Mineral (S1)		Iron-Mangar		sses (F12		Ι,	Other (Explain in Remarks)			
-	Bleyed Matrix (S4)		MLRA 13	,		400 400	4	³ Indicators of hydrophytic vegetation and			
	Redox (S5)		Umbric Surf	•	<i>,</i> .						
Stripped Matrix (S6)Piedmont Floodplain Soils (F19) (MLF Dark Surface (S7) Red Parent Material (F21) (MLRA 127					<i>,</i> .	•	unless disturbed or problematic.				
	Layer (if observed):			material	(, , , , , , , , , , , , , , , , , , , 		, 177, 170)				
Type:	Layer (il observeu).										
Depth (ii	nches).						Hydric Soi	I Present? Yes X No			
Deput (ii	ionog.										

				•						
U.S. Ar WETLAND DETERMINATION DAT See ERDC/EL TR-07-2	OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)									
Project/Site: Banner Farm Mitigation Si	ect/Site: Banner Farm Mitigation Site City/County: Henderson Sampling Date: 6-6									
Applicant/Owner: Wildlands Enginee	ering, Inc.			State: NC	Sampling Point: DP5					
Investigator(s): Jordan Hessler	nvestigator(s): Jordan Hessler Section, Township, Range: N/A									
Landform (hillside, terrace, etc.): Flood	plain	Lo	cal relief (concave, convex, none	e): None	Slope (%): <1%					
Subregion (LRR or MLRA): LRR N, MLF	RA 130B Lat:	35.352245	Long: <u>-82.5</u>	54550	Datum: NAD 83					
Soil Map Unit Name: Rosman loam (Ro)			NWI classific	cation:					
Are climatic / hydrologic conditions on the	e site typical fo	r this time of ye	ar? Yes <u>X</u> N	No (If no	, explain in Remarks.)					
Are Vegetation $X_{,}$ Soil $X_{,}$ or H	ydrology X	significantly di	sturbed? Are "Normal Circur	nstances" preser	nt? Yes <u>x</u> No					
Are Vegetation, Soil, or H	ydrology	naturally probl	ematic? (If needed, explain	any answers in F	Remarks.)					
SUMMARY OF FINDINGS – Atta	ach site ma	p showing s	sampling point locations	, transects, ii	mportant features, etc.					
Hydrophytic Vegetation Present?	Yes	No x	Is the Sampled Area							
Hydric Soil Present?	Yes	No x	within a Wetland?	Yes	No X					
Wetland Hydrology Present?	Yes	No <u>x</u>								
Remarks: Sampling point is in an agricultural field spraying, ditching, etc. These practices		1 0		agricultural prac	tices. Which include, tilling,					

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is requi	red; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	Sparsely Vegetated Concave Surface (B8)	
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)
Saturation (A3)	ots (C3) Moss Trim Lines (B16)	
Water Marks (B1)	Dry-Season Water Table (C2)	
Sediment Deposits (B2)	(C6) Crayfish Burrows (C8)	
Drift Deposits (B3)	Saturation Visible on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Iron Deposits (B5)	_	Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B	7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9)		Microtopographic Relief (D4)
Aquatic Fauna (B13)		FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No x Depth (inches):	
Water Table Present? Yes	No x Depth (inches):	
Saturation Present? Yes	No x Depth (inches):	Wetland Hydrology Present? Yes No x
(includes capillary fringe)		
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspec	ections), if available:
Remarks:		
No hydrologic indicators present.		

Sampling Point: DP5

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30</u>)	% Cover	Species?	Status	Dominance Test worksheet:
1 2.				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3.				
4.				Total Number of Dominant Species Across All Strata: 1 (B)
5.				、
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15)				FACW species 0 x 2 = 0
1				FAC species 0 x 3 = 0
2				FACU species x 4 =
3				UPL species 0 x 5 = 0
4				Column Totals: 0 (A) 0 (B)
5				Prevalence Index = B/A =
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
	:	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5)				Problematic Hydrophytic Vegetation ¹ (Explain)
1. <u>Corn</u>	40	Yes		¹ Indicators of hydric soil and wetland hydrology must be
2				present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4			·	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of height.
6.				Ğ
7				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
8				(1 m) tall.
9				
11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	40	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:20	20%	of total cover:	8	height.
Woody Vine Stratum (Plot size: 5)				
1				
2				
3				
4.				
5				Hydrophytic
	:	=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes <u>No x</u>
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

SOIL

Profile Desc	ription: (Describe	to the de	oth needed to doc	ument t	he indica	tor or co	onfirm the ab	sence of inc	licators.)		
Depth	Matrix		Redo	x Featur		<u> </u>					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rei	marks	
0-15	10YR 4/3	100				<u> </u>	Loamy/Cla	уеу			
						<u> </u>					
¹ Type: C=Co	oncentration, D=Depl	letion, RM	=Reduced Matrix, N	IS=Mas	ked Sand	Grains.	² L	ocation: PL:	Pore Lining,	M=Matrix.	
Hydric Soil I	Indicators:							Indicators	for Problem	natic Hydric Soils ³ :	
Histosol	(A1)		Polyvalue Be	low Sur	face (S8)	(MLRA	147, 148)	2 cm l	Muck (A10) (N	/LRA 147)	
Histic Epipedon (A2) Thin Dark Surface (S				69) (MLR	A 147, 14	, 148) Coast Prairie Redox (A16)					
Black Histic (A3)			Loamy Mucky Mineral (F1) (MLRA 136)					(MLRA 147, 148)			
				eyed Matrix (F2)					Piedmont Floodplain Soils (F19)		
	Layers (A5)		Depleted Matrix (F3)					(MLRA 136, 147)			
	ick (A10) (LRR N)		·	Redox Dark Surface (F6)					Red Parent Material (F21)		
	Below Dark Surface	e (A11)	Depleted Da		· · ·					27, 147, 148)	
 Thick Da	ark Surface (A12)	()	Redox Depre	essions	(F8)		Very Shallow Dark Surface				
	lucky Mineral (S1)		Iron-Mangar		• •) (LRR N					
	leyed Matrix (S4)		MLRA 130			, (-,		(,	
	edox (S5)		Umbric Surfa	•	3) (MLRA	122, 136	;)	³ Indicators	of hydrophyt	ic vegetation and	
	Matrix (S6)		Piedmont Fl						5 1 5	nust be present,	
	rface (S7)		Red Parent	•	•		•		disturbed or	•	
Restrictive I	Layer (if observed):										
Type:											
Depth (ir	nches):						Hydric So	il Present?	Yes	<u>No X</u>	
Remarks:											

U.S. Army Corps of Engineers						
WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region						
See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R						

OMB Control #: 0710-xxxx, Exp: Pending Requirement Control Symbol EXEMPT: (Authority: AR 335-15, paragraph 5-2a)

Project/Site: Banne	er Farm N	litigation Site			City/C	ounty: Henderso	n			Sampling Date:	6-5-19
Applicant/Owner:	Wildlar	nds Engineering, Inc.						State:	NC	Sampling Point:	DP6
Investigator(s): Jord	an Hessl	er			Section, T	ownship, Range:	N/A				
Landform (hillside, te	errace, et	c.): Ditch			Local relief (c	oncave, convex,	none):	concav	е	Slope (%):	<1%
Subregion (LRR or M	1LRA): <u>I</u>	RR N, MLRA 130B	Lat:	35.351927		Long: -8	32.5548	34		Datum:	NAD 83
Soil Map Unit Name:	Rosma	n loam (Ro)						NWI c	lassificatio	on:	
Are climatic / hydrolo	gic cond	itions on the site typi	cal for	this time of	year?	Yes X	No		(If no, ex	kplain in Remark	s.)
Are Vegetation X	, Soil	X , or Hydrology	Х	significantly	disturbed?	Are "Normal C	ircumst	ances"	present?	Yes <u>x</u>	No
Are Vegetation	, Soil	, or Hydrology		naturally pro	oblematic?	(If needed, exp	olain an	y answe	ers in Ren	narks.)	
				-							

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes X No Is the Sampled Area Hydric Soil Present? Yes X No within a Wetland? Yes Wetland Hydrology Present? Yes X No Yes Yes Yes	x	No
--	---	----

Remarks:

Sampling point in agricultural field ditch. Data point is for wetlands A, B, C, D, E, F, G, H, I, J, K, L, and W. Data point was taken in wetland B. The sampling point is significantly disturbed by agricultural practices. Which include, tilling, spraying, ditching, etc. These practices significantly disturbed the vegetation, soils, and hydrology.

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)				
Primary Indicators (minimum of one is requi	red; check all that apply)	Surface Soil Cracks (B6)				
X Surface Water (A1)	True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)				
X High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10)				
X Saturation (A3)	Oxidized Rhizospheres on Living Ro	Roots (C3) Moss Trim Lines (B16)				
Water Marks (B1)	Dry-Season Water Table (C2)					
Sediment Deposits (B2)	ils (C6) Crayfish Burrows (C8)					
x Drift Deposits (B3)	Saturation Visible on Aerial Imagery (C9)					
Algal Mat or Crust (B4)	Algal Mat or Crust (B4) Other (Explain in Remarks)					
Iron Deposits (B5)		Geomorphic Position (D2)				
Inundation Visible on Aerial Imagery (B	7)	Shallow Aquitard (D3)				
x Water-Stained Leaves (B9)		Microtopographic Relief (D4)				
Aquatic Fauna (B13)		X FAC-Neutral Test (D5)				
Field Observations:						
Surface Water Present? Yes x	No Depth (inches): 1					
Water Table Present? Yes x	No Depth (inches): 3					
Saturation Present? Yes x	No Depth (inches): 1	Wetland Hydrology Present? Yes X No				
(includes capillary fringe)						
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos, previous inspe	pections), if available:				
Remarks:						

VEGETATION (Four Strata) – Use scient	tific names (of plants.		Sampling Point:	DP6
Tree Stratum (Plot size: 30)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:	
1. Acer rubrum	20	Yes	FAC	Number of Dominant Species	
2. Cornus florida	5	Yes	FACU	That Are OBL, FACW, or FAC:	3 (A)
3.				Total Number of Dominant	、
4.	·			Species Across All Strata:	5 (B)
5				Percent of Dominant Species	
6				That Are OBL, FACW, or FAC:	60.0% (A/B)
7				Prevalence Index worksheet:	
	25 =	=Total Cover		Total % Cover of: Mu	ultiply by:
50% of total cover:	13 20%	of total cover:	5	OBL species 5 x 1 =	5
Sapling/Shrub Stratum (Plot size: 15)			FACW species 15 x 2 =	30
1.				FAC species 25 x 3 =	75
2.		<u> </u>		FACU species 5 x 4 =	20
3.	·			UPL species 0 x 5 =	0
4.	·			Column Totals: 50 (A)	130 (B)
5.	•			Prevalence Index = B/A =	2.60
6.				Hydrophytic Vegetation Indicators:	2.00
7				1 - Rapid Test for Hydrophytic Veg	getation
8.				X 2 - Dominance Test is >50%	
9				X 3 - Prevalence Index is $\leq 3.0^1$	
50% of total cover:		=Total Cover of total cover:		4 - Morphological Adaptations ¹ (Pr data in Remarks or on a separa	
	2070				
Herb Stratum (Plot size: 5)	45			Problematic Hydrophytic Vegetatio	
1. Fescue	15	Yes		¹ Indicators of hydric soil and wetland h	
2. Impatiens capensis	10	Yes	FACW	present, unless disturbed or problema	
3. <u>Saururus cernuus</u>	5	No	OBL	Definitions of Four Vegetation Strat	a:
4. Boehmeria cylindrica	5	No	FACW	Tree – Woody plants, excluding vines,	
5				more in diameter at breast height (DBI	H), regardless of
6				height.	
7				Sapling/Shrub – Woody plants, exclu	ıding vines, less
8.	·			than 3 in. DBH and greater than or equ	
9.		<u> </u>		(1 m) tall.	
10.	·			Herb – All herbaceous (non-woody) pl	ants. regardless
11.	·			of size, and woody plants less than 3.2	
	35 =	=Total Cover		Woody Vine – All woody vines greate	er than 3 28 ft in
50% of total cover:		of total cover:	7	height.	
Woody Vine Stratum (Plot size: 5)	10 2070				
	-	N	540		
1. Toxicodendron radicans	5	Yes	FAC		
2					
3.					
4					
5.				Hydrophytic	
	5 =	=Total Cover		Vegetation	
50% of total cover:	3 20%	of total cover:	1	Present? Yes X No	
Remarks: (Include photo numbers here or on a ser					
Remarks. (include photo numbers here of on a sec	Jarate Sheet.)				

SOIL

Donth	 Matrix	•		x Featur			onfirm the ab		,	
Depth (inches)	Color (moist)	%	Color (moist)	x reatur %	Type ¹	Loc ²	Texture		Rema	rks
, ,				70	турс				Renta	1113
0-9	10YR 4/1	100				<u> </u>	Mucky Sa	Ind		
9-15	10YR 4/1	100					Mucky Sa	ind		
						<u> </u>				
¹ Type: C=Co	oncentration, D=Depl	letion, RM=	Reduced Matrix, N	/IS=Mas	ked Sand	l Grains.	² L	ocation: PL=F	Pore Lining, M=	Matrix.
Hydric Soil I	Indicators:							Indicators f	or Problemati	c Hydric Soils
Histosol (A1)			Polyvalue Below Surface (S8) (MLRA 147, 148)			2 cm Muck (A10) (MLRA 147)				
Histic Ep	oipedon (A2)		Thin Dark Surface (S9) (MLRA 147, 148)			Coast Prairie Redox (A16)				
Black His	stic (A3)		Loamy Mucky Mineral (F1) (MLRA 136)			(MLRA 147, 148)				
Hydroge	n Sulfide (A4)		Loamy Gleyed Matrix (F2)			Piedmont Floodplain Soils (F19)				
Stratified	l Layers (A5)		Depleted Matrix (F3)			(MLRA 136, 147)				
2 cm Mu	ick (A10) (LRR N)		Redox Dark Surface (F6)			Red Pa	rent Material (F	21)		
Depleted	Below Dark Surface	e (A11)	Depleted Dark Surface (F7) Redox Depressions (F8) Iron-Manganese Masses (F12) (LRR N ,			(outsi	(outside MLRA 127, 147, 148)			
Thick Da	ark Surface (A12)					Very Shallow Dark Surface (F22) Other (Explain in Remarks)				
X Sandy M	lucky Mineral (S1)									
Sandy G	leyed Matrix (S4)		MLRA 13	5)						
Sandy R	edox (S5)		Umbric Surf	ace (F13	3) (MLRA	122, 136)	³ Indicators of	of hydrophytic v	egetation and
Stripped	Matrix (S6)		Piedmont Floodplain Soils (F19) (MLRA 148)			A 148)	wetland	hydrology mus	st be present,	
Dark Sur	rface (S7)		Red Parent	Material	(F21) (M	LRA 127,	147, 148)	unless o	disturbed or pro	oblematic.
Restrictive L	Layer (if observed):									
Type:										
Depth (ir	nches):						Hydric So	il Present?	Yes X	No

NC DWQ Stream Identification Fo	orm Version 4.11		Stream Classi	fication Point
Date: 12/17/2018	12/17/2018 Project/Site: Banner Fair		Latitude: 35	35356
Date: 12/18/2018 Evaluator: M. Cooldell	County: Her			32,55421
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*35.5		nation (circle one) rmittent Perennia	Other UT 1 e.g. Quad Name:	
A. Geomorphology (Subtotal = 16)	Absent	Weak	Moderate	Streng
1 ^a Continuity of channel bed and bank	0	1	2	(3)
2. Sinuosity of channel along thalweg	0	(h)	2	3
3. In-channel structure: ex. riffle-pool, step-pool,				
ripple-pool sequence	0	1	$\begin{pmatrix} 2 \end{pmatrix}$	3
4. Particle size of stream substrate	0	Ø	2	. 3
5. Active/relict floodplain	0	(1) ·	2	3
6. Depositional bars or benches	0	1	(2)	3
7. Recent alluvial deposits	0	1	T	3
8. Headcuts	0	Ø	2	3
9. Grade control	Q	0.5	1	1.5
10. Natural valley	8	0.5	1	1.5
11. Second or greater order channel	· No	$p = 0^{2}$	(Yes	= 3
^a artificial ditches are not rated; see discussions in manua	-			
B. Hydrology (Subtotal = <u></u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				
12. Presence of Baseflow	0	1	2	(3)
13. Iron oxidizing bacteria	0	Ð	2	3
14. Leaf litter	1.5	(P)	0.5	0.
15. Sediment on plants or debris	0	0.5	Ð	1.5
16. Organic debris lines or piles	0	0.5	1 ~	1.5
17. Soil-based evidence of high water table?	No	o = 0	Yes	
C. Biology (Subtotal = 10)	· · · · · ·	L		
18. Fibrous roots in streambed	(\mathfrak{I})	2	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	0		(2)	3
21. Aquatic Mollusks	. (0)	1	2	3
22. Fish	6	0.5	1	1.5
23. Crayfish	0	0.5	0	1.5
24. Amphibians	Ð	0.5	1	. 1.5
25. Algae	· 0	0.5	(D)	1.5
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 Other = (
*perennial streams may also be identified using other me	ethods. See p. 35 of manua		Station Construction	······································
Notes: Dansel Fly - 10 Crayfi				
Sketch:		•		
· · · ·				

NC DWQ Stream Identification For		T in the second	Stream Classif		
Date: 1211812018	Project/Site:	annortaim	Latitude: 35		
Evaluator: M. G. ddell	County: Hen	derson	Longitude: -82,550		
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*		nation (circle one) rmittent (Perennial)		Other UTA e.g. Quad Name:	
A. Geomorphology (Subtotal = 13,5)	Absent	Weak	Moderate	Strong	
1 ^a . Continuity of channel bed and bank	Q	1	2	(3)	
2. Sinuosity of channel along thalweg	Ô	1	2	3	
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0		2	3	
4. Particle size of stream substrate	0	X	2	3	
5. Active/relict floodplain	0	1	2)	3	
6. Depositional bars or benches	0	(1)	2	3	
7. Recent alluvial deposits	0	<u> </u>	Ô	3	
8. Headcuts	6	1	2	3	
9. Grade control		0.5	1	1.5	
10. Natural valley	n n n n n n n n n n n n n n n n n n n	0.5	1	1.5	
		= 0	Yes -		
11. Second or greater order channel ^a artificial ditches are not rated; see discussions in manual		-0	(Tes-	<u> </u>	
B. Hydrology (Subtotal = 2.5)					
12. Presence of Baseflow	0	1	2	3	
13. Iron oxidizing bacteria	(0)	1	· 2	3	
14. Leaf litter	1.5	(I)	0.5	0	
15. Sediment on plants or debris	0	0.5	1	(1.5)	
16. Organic debris lines or piles	0	0.5	(1)	1.5	
17. Soil-based evidence of high water table?	No	= 0	Yes =		
C. Biology (Subtotal = 11.5)	· · · · · · · · · · · · · · · · · · ·		h		
18. Fibrous roots in streambed	(3)	2	1	0	
19. Rooted upland plants in streambed	3	2	1	. 0	
20. Macrobenthos (note diversity and abundance)	0	1	2	(3)	
21. Aquatic Mollusks		1	2	3	
22. Fish	0.	0.5	1	1.5	
23. Crayfish	. O	0.5	1	1.5	
24. Amphibians	0	0.5	1	(1.5)	
25. Algae	. 0	0.5	6	1.5	
26. Wetland plants in streambed		FACW = 0.75; OBI	$_{-} = 1.5$ Other = 0)	
*perennial streams may also be identified using other metho	ods. See p. 35 of manual		C		
Notes: 3 Salamander, 3 d Sketch:	amselflie	s, 1 dragont	Fly, ISCU	d, Iber	

Date: 12/18/2018	Project/Site: B	anner Tain	Latitude: 39	53539	
Date: 12/18/2018 Evaluator: M. Caddell	County: Hen	Contraction of the second s		Longitude: -82,559 Other BannerCree e.g. Quad Name: Reach	
Total Points:Stream is at least intermittent $if \ge 19$ or perennial if $\ge 30^*$		nation (circle one) rmittent	Other Ban e.g. Quad Name:		
A. Geomorphology (Subtotal = 20.5)	Absent	Weak	Moderate	Strong	
1 ^{a.} Continuity of channel bed and bank	0	1	2	3	
2. Sinuosity of channel along thalweg	0	(1)	2	3	
3. In-channel structure: ex. riffle-pool, step-pool,	0		0		
ripple-pool sequence	0	1	2	3	
4. Particle size of stream substrate	0	1	2	\bigcirc	
5. Active/relict floodplain	0	1 .	\mathbb{C}	3	
6. Depositional bars or benches	0	1	2	3	
7. Recent alluvial deposits	0	1	(23)	3	
8. Headcuts		1	2	3	
9. Grade control	(0)	0.5	1	1.5	
10. Natural valley	0	0.5	1	(1.5)	
11. Second or greater order channel	Nc) = 0	(Yes:		
^a artificial ditches are not rated; see discussions in manual					
B. Hydrology (Subtotal =)					
12. Presence of Baseflow	0	1	2	\bigcirc	
13. Iron oxidizing bacteria			2	3	
14. Leaf litter	1.5		0.5	<u> </u>	
15. Sediment on plants or debris	0	0.5	1	1.5	
16. Organic debris lines or piles	0	0.5	1	1.5	
17. Soil-based evidence of high water table?		= 0	Yes:		
C. Biology (Subtotal = (\mathcal{O}))			Not account		
18. Fibrous roots in streambed	(3)	2	1	0	
19. Rooted upland plants in streambed		2	1	0	
20. Macrobenthos (note diversity and abundance)	0	1	2	<u>(</u> 3)	
		1	2		
21. Aquatic Mollusks			Ζ	3	
22. Fish		0.5		1.5	
23. Crayfish		0.5	1	1.5	
24. Amphibians	<u> </u>	0.5	1	1.5	
25. Algae	· 0	0.5	Con 12	1.5	
26. Wetland plants in streambed			3L = 1.5 ©ther = 0	<u> </u>	
*perennial streams may also be identified using other met	· · · · · ·	I.			
Notes: 3 may Aly, I damse	14 IV ISTO	NEARY, 91	GANTIN	V, (tan	
	01	<u> </u>	4		
Sketch:					
	١				
		•	-		
	•				

PROPERTY LEGAL DESCRITION:

Deed Book: 831

County: Henderson

Parcel ID Number: PIN 9630919204

Street Address: Off Banner Farm Road, Mills River, NC

Page: 23

Property Owner (please print): Kirby and Sherri Johnson

The undersigned, registered property owner(s) of the above property, do hereby authorize Wildlands Engineering, Inc. to take all actions necessary for the evaluation of the property as a potential stream, wetland and/or riparian buffer mitigation project, including conducting stream and/or wetland determinations and delineations, as well as issuance and acceptance of any required permit(s) or certification(s). I agree to allow regulatory agencies, including the US Army Corps of Engineers, to visit the property as part of these environmental reviews.

Property Owners(s) Address: 207 E. Price Street, Hendersonville, NC 28739 (if different from above)

Property Owner Telephone Number: 828-329-8622

We hereby certify the above information to be true and accurate to the best of our knowledge.

(Property Owner Authorized Signature)

(Date)

(Property Owner Authorized Signature)

PROPERTY LEGAL DESCRITION:

Deed Book: 1598

Page: 219

County: Henderson

Parcel ID Number: PIN 9630826726

Street Address: Off Banner Farm Road, Mills River, NC

Property Owner (please print): Mitchell and Wendy Gaither

The undersigned, registered property owner(s) of the above property, do hereby authorize Wildlands Engineering, Inc. to take all actions necessary for the evaluation of the property as a potential stream, wetland and/or riparian buffer mitigation project, including conducting stream and/or wetland determinations and delineations, as well as issuance and acceptance of any required permit(s) or certification(s). I agree to allow regulatory agencies, including the US Army Corps of Engineers, to visit the property as part of these environmental reviews.

Property Owners(s) Address: 60 Banner Farm Road, Mills River, NC 28759 (if different from above)

Property Owner Telephone Number:

We hereby certify the above information to be true and accurate to the best of our knowledge.

(Property Owner Authorized Signature)

(Date)

(Property Owner Authorized Signature)

PROPERTY LEGAL DESCRITION:

Deed Book: 1087, 1005 Page: 194, 65

County: Henderson

Parcel ID Number: PIN 9640028341, 9630924395

Street Address: Off Banner Farm Road, Mills River, NC

Property Owner (please print): Mountain Bean Holdings, Inc.

The undersigned, registered property owner(s) of the above property, do hereby authorize Wildlands Engineering, Inc. to take all actions necessary for the evaluation of the property as a potential stream, wetland and/or riparian buffer mitigation project, including conducting stream and/or wetland determinations and delineations, as well as issuance and acceptance of any required permit(s) or certification(s). I agree to allow regulatory agencies, including the US Army Corps of Engineers, to visit the property as part of these environmental reviews.

Property Owners(s) Address: P.O. Box 637, Horse Shoe, NC 28742 (if different from above)

Property Owner Telephone Number: 828 329-8623

We hereby certify the above information to be true and accurate to the best of our knowledge.

(Property Owner Authorized Signature)

PROPERTY LEGAL DESCRITION:

Deed Book: 849

Page: 853

County: Henderson

Parcel ID Number: PIN 9630900480

Street Address: Off Banner Farm Road, Mills River, NC

Property Owner (please print): Preston and Judy Johnson

The undersigned, registered property owner(s) of the above property, do hereby authorize Wildlands Engineering, Inc. to take all actions necessary for the evaluation of the property as a potential stream, wetland and/or riparian buffer mitigation project, including conducting stream and/or wetland determinations and delineations, as well as issuance and acceptance of any required permit(s) or certification(s). I agree to allow regulatory agencies, including the US Army Corps of Engineers, to visit the property as part of these environmental reviews.

Property Owners(s) Address: P.O. Box 901177, Homestead, FL 33090 (if different from above)

Property Owner Telephone Number:

We hereby certify the above information to be true and accurate to the best of our knowledge.

(Property Owner Authorized Signature) (Date)

(Property Owner Authorized Signature)

PROPERTY LEGAL DESCRITION:

Deed Book: 1465 Page: 126

County: Henderson

Parcel ID Number: PIN 9630912884

Street Address: Off Banner Farm Road, Mills River, NC

Property Owner (please print): Vine Ripe Investments, Inc.

The undersigned, registered property owner(s) of the above property, do hereby authorize Wildlands Engineering, Inc. to take all actions necessary for the evaluation of the property as a potential stream, wetland and/or riparian buffer mitigation project, including conducting stream and/or wetland determinations and delineations, as well as issuance and acceptance of any required permit(s) or certification(s). I agree to allow regulatory agencies, including the US Army Corps of Engineers, to visit the property as part of these environmental reviews.

Property Owners(s) Address: P.O. Box 609, Horse Shoe, NC 28742 (if different from above)

Property Owner Telephone Number:

We hereby certify the above information to be true and accurate to the best of our knowledge.

(Property Owner Authorized Signature) (Date)

NC WAM WETLAND ASSESSMENT FORM Accompanies User Manual Version 5

USACE AID#:		NCDWR #:	
Project Name Ba	anner Farm Mitigation Site	Date of Evaluation 6/5/19	
Applicant/Owner Name Wi	ildlands Engineering Inc. (WEI)	Wetland Site Name Wetland	ls M,N,O,P,T,U,V
Wetland Type He	eadwater Forest	Assessor Name/Organization J. Hessl	er/WEI
Level III Ecoregion Blu	ue Ridge Mountains	Nearest Named Water Body French	Broad River
River Basin Fre	ench Broad	USGS 8-Digit Catalogue Unit 060101)5
County He	enderson	NCDWR Region Ashevill	e
Yes ONO Pre	ecipitation within 48 hrs?	Latitude/Longitude (deci-degrees) 35.3429	90/-82.558923
 Please circle and/or make no appropriate, in recent past (fo to the following. Hydrological modifica Surface and sub-surfa septic tanks, undergro Signs of vegetation st Habitat/plant communication 	cting the assessment area (may not be within ote on last page if evidence of stressors is appar or instance, approximately within 10 years). Not ations (examples: ditches, dams, beaver dams, of ace discharges into the wetland (examples: disc ound storage tanks (USTs), hog lagoons, etc.) tress (examples: vegetation mortality, insect dam nity alteration (examples: mowing, clear-cutting,	ent. Consider departure from reference, if eworthy stressors include, but are not limited dikes, berms, ponds, etc.) harges containing obvious pollutants, presenc mage, disease, storm damage, salt intrusion,	-
Is the assessment area inte	ensively managed? 💿 Yes 🔿 No		
 Anadromous fish Federally protected sp NCDWR riparian buffe Abuts a Primary Nurs Publicly owned proper N.C. Division of Coas Abuts a stream with a Designated NCNHP restart 	sery Area (PNA) erty stal Management Area of Environmental Concerr a NCDWQ classification of SA or supplemental c	es n (AEC) (including buffer)	apply to the assessment area
	n is associated with the wetland, if any? (che	ck all that apply)	
BlackwaterBrownwater	one of the following boxes) CLunar C	Wind C Both	
Is the assessment area's su	urface water storage capacity or duration sub	ostantially altered by beaver?	🔿 Yes 💿 No
Does the assessment area	experience overbank flooding during normal	rainfall conditions?	○ No
 Ground Surface Condit Check a box in each co (VS) in the assessment then rate the assessment GS VS A A Not sevent B B B Severely sediment alteration 	ition/Vegetation Condition – assessment area olumn. Consider alteration to the ground surfac area. Compare to reference wetland if applicable nt area based on evidence of an effect. erely altered y altered over a majority of the assessment area ntation, fire-plow lanes, skidder tracks, bedding, on examples: mechanical disturbance, herbicide ersity [if appropriate], hydrologic alteration)	a condition metric e (GS) in the assessment area and vegetation le (see User Manual). If a reference is not ap (ground surface alteration examples: vehicle fill, soil compaction, obvious pollutants) (vege	plicable, e tracks, excessive tation structure
Check a box in each co duration (Sub). Conside while a ditch > 1 foot de Surf Sub A A Water st B B B Water st C C C Water st	ace Storage Capacity and Duration – assessmolumn. Consider surface storage capacity and derease in hydrology. A cape is expected to affect both surface and sub-subtorage capacity and duration are not altered. Atorage capacity or duration are altered, but not satorage capacity or duration are substantially altered (examples: draining, flooding, soil compaction,	duration (Surf) and sub-surface storage capac litch ≤ 1 foot deep is considered to affect surfa urface water. Consider tidal flooding regime, if ubstantially (typically, not sufficient to change red (typically, alteration sufficient to result in v	ace water only, applicable. vegetation). regetation
3. Water Storage/Surface Check a box in each co type (WT). AA WT 3a. A A Ma B B Ma C C C Ma	a Relief – assessment area/wetland type cond olumn for each group below. Select the appropriate of wetland with depressions able to pond vajority of wetland wetlan	ition metric (skip for all marshes) ppriate storage for the assessment area (AA) a vater > 1 foot deep vater 6 inches to 1 foot deep	

3b. O A Evidence that maximum depth of inundation is greater than 2 feet

- B Evidence that maximum depth of inundation is between 1 and 2 feet
 C Evidence that maximum depth of inundation is less than 1 foot

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

- 4a. 🔿 A Sandy soil
 - ΘB Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
 - ŌС Loamy or clayey soils not exhibiting redoximorphic features
 - ÔD. Loamy or clayey gleyed soil
 - ÔE. Histosol or histic epipedon
- 4b. 💽 A Soil ribbon < 1 inch
 - OВ Soil ribbon \geq 1 inch
- 4c. 💽 A No peat or muck presence
 - OВ A peat or muck presence

Discharge into Wetland – opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- Surf Sub
- ΘA 💿 A Little or no evidence of pollutants or discharges entering the assessment area
- Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the OB OB treatment capacity of the assessment area
- Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and 00 00 potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation. odor)

Land Use – opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M). Effective riparian buffers are considered to be 50 feet wide in the Coastal Plain and Piedmont ecoregions and 30 feet wide in the Blue Ridge Mountains ecoregion. WS 5M 2M

- ΠA ΠA ΠA ≥ 10% impervious surfaces
- БΒ ΠВ 🗆 В Confined animal operations (or other local, concentrated source of pollutants)
- ПС ≥ 20% coverage of pasture
- ≥ 20% coverage of agricultural land (regularly plowed land)
- ΓE ΓE ΓE ≥ 20% coverage of maintained grass/herb
- ΓF EF EF ≥ 20% coverage of clear-cut land □G □G □G

Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent dainage and/or overbank flow from affectio the assessment area.

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
 - If Yes, continue to 7b. If No, skip to Metric 8. Yes No
- 7b. How much of the first 50 feet from the bank is weltand? (Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.) ΟA ≥ 50 feet

 - OВ From 30 to < 50 feet ÔC.
 - From 15 to < 30 feet
 - ΘD From 5 to < 15 feet
 - < 5 feet or buffer bypassed by ditches ÖE.
- 7c. Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. > 15-feet wide Other open water (no tributary present) (≤ 15-feet wide
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water?
 - Yes ONO
- 7e. Is tributary or other open water sheltered or exposed?
 - Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 - Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- 8. Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

- WΤ WC
- OA. O A ≥ 100 feet
- OB OB From 80 to < 100 feet
- 00 00 From 50 to < 80 feet
- OD OD From 40 to < 50 feet
- ΟE From 30 to < 40 feet OE.
- OF. ÔE. From 15 to < 30 feet
- ŌG 💽 G From 5 to < 15 feet
- OH-OН < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- $\bigcirc A$ Evidence of short-duration inundation (< 7 consecutive days)
- Evidence of saturation, without evidence of inundation ΘB
- 00 Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)

Consider recent deposition only (no plant growth since deposition).

- Sediment deposition is not excessive, but at approximately natural levels. A
- ÖВ Sediment deposition is excessive, but not overwhelming the wetland.
- $\bigcirc C$ Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. W/T WC

- FW (if applicable) ÔΑ O A OA. ≥ 500 acres
- ŌВ ŐВ From 100 to < 500 acres ÖВ
- ÕC. From 50 to < 100 acres
- ğc D ĞC. ŏр From 25 to < 50 acres
- ÖΕ ΘE. ΘE. From 10 to < 25 acres
- ÖE. ΘE. ÖE From 5 to < 10 acres
- ÕG. ng ng From 1 to < 5 acres
- ÖH. ÖH ÖH From 0.5 to < 1 acre
- ÖL. ÖL ÖL. From 0.1 to < 0.5 acre
- 🕢 J 💽 J 🕢 J From 0.01 to < 0.1 acre
- ŌΚ ŌΚ < 0.01 acre or assessment area is clear-cut ÖK

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- ΟA Pocosin is the full extent (\geq 90%) of its natural landscape size.
- ÕΒ. Pocosin is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas – landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous

metric naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, fields (pasture open and agriculture), or water > 300 feet wide. Well Loosely

- ΟA ≥ 500 acres OA.
- ÖΒ. ÖВ From 100 to < 500 acres
- ÖC. 00 From 50 to < 100 acres
- ÖD. ΘD From 10 to < 50 acres
- ÖE. < 10 acres ΘE.
 - ÖE. Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Yes No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.

14. Edge Effect - wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear-cut, select option "C."

- OA. 0
- ΘB 1 to 4

ÖE.

ÖC. 5 to 8

15. Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate OA. species, with exotic plants absent or sparse within the assessment area.
- Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species OB. characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-ΘC characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Vegetation diversity is high and is composed primarily of native species (<10% cover of exotics). ÔA.
- ΘB Vegetation diversity is low or has > 10% to 50% cover of exotics.
- ÖC. Vegetation is dominated by exotic species (>50% cover of exotics).

17. Vegetative Structure - assessment area/wetland type condition metric

17a. Is vegetation present?

AA

- Yes O No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands.
 - ÔΑ ≥ 25% coverage of vegetation
 - ÖΒ. < 25% coverage of vegetation

WT

- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.
 - ÔA ÔA Canopy closed, or nearly closed, with natural gaps associated with natural processes
 - ΘB Canopy present, but opened more than natural gaps
 - Canopy Canopy sparse or absent Ō٥ O C
 - A ○ A Dense mid-story/sapling layer
 - Mid-Story ÕВ õв Moderate density mid-story/sapling layer
 - ΘC ΘC Mid-story/sapling layer sparse or absent
 - Shrub ÔA Dense shrub layer ○ A
 - ŐВ ŐВ Moderate density shrub laver
 - ΘC ΘC Shrub layer sparse or absent
 - ΟA ΟA Dense herb laver
 - Herb ΘB ΘB Moderate density herb laver
 - Herb layer sparse or absent OC. O C

18. Snags - wetland type condition metric (skip for all marshes)

 $\bigcirc A$ Large snags (more than one) are visible (> 12-inches DBH, or large relative to species present and landscape stability). 🖲 B. Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are O A present.
- ΟB Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12-inch DBH.
- Majority of canopy trees are < 6 inches DBH or no trees. C

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

- Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ΟA
- ΘB Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity - assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only) Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

- Overbank and overland flow are not severely altered in the assessment area. **A**
- 🕢 B Overbank flow is severely altered in the assessment area.
- ÖC Overland flow is severely altered in the assessment area.
- ÖD. Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Classification is based on the reference wetland type that on-site wetlands would become if not maintained.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name	Wetlands M,N,O,P,T,U,V	Date	6/5/19
Wetland Type	Headwater Forest	Assessor Name/Organization	J. Hessler/WEI
Notes on Field Assessment	Form (Y/N)		YES
Presence of regulatory cons	NO		
Wetland is intensively mana	YES		
Assessment area is located	YES		
Assessment area is substar	NO		
Assessment area experienc	YES		
Assessment area is on a co	astal island (Y/N)		NO

Sub-function Rating Summary

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-Surface Storage and Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence? (Y/N)	NO
	Particulate Change	Condition	MEDIUM
		Condition/Opportunity	NA
		Opportunity Presence? (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Physical Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence? (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence? (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW

Function Rating Summary

Function	Metrics/Notes	Rating
Hydrology	Condition	MEDIUM
Water Quality	Condition	MEDIUM
	Condition/Opportunity	MEDIUM
	Opportunity Presence? (Y/N)	NO
Habitat	Condition	LOW

Overall Wetland Rating

MEDIUM

NC WAM WETLAND ASSESSMENT FORM Accompanies User Manual Version 5

USACE AID#:	NCDWR #:
Project Name Banner Farm Mitigation Site	Date of Evaluation 6/5/19
Applicant/Owner Name Wildlands Engineering Inc. (WEI)	Wetland Site Name Wetlands R,Q,S
Wetland Type Bottomland Hardwood Forest	Assessor Name/Organization J. Hessler/WEI
Level III Ecoregion Blue Ridge Mountains	Nearest Named Water Body French Broad River
River Basin French Broad	USGS 8-Digit Catalogue Unit 06010105
County Henderson	NCDWR Region Asheville
• Yes ON Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees) 35.352292/-82.557848
 Evidence of stressors affecting the assessment area (may not be within Please circle and/or make note on last page if evidence of stressors is apparappropriate, in recent past (for instance, approximately within 10 years). Not to the following. Hydrological modifications (examples: ditches, dams, beaver dams, Surface and sub-surface discharges into the wetland (examples: disc septic tanks, underground storage tanks (USTs), hog lagoons, etc.) Signs of vegetation stress (examples: vegetation mortality, insect data the Habitat/plant community alteration (examples: mowing, clear-cutting) 	arrent. Consider departure from reference, if oteworthy stressors include, but are not limited dikes, berms, ponds, etc.) charges containing obvious pollutants, presence of nearby armage, disease, storm damage, salt intrusion, etc.)
Is the assessment area intensively managed? • Yes ONO	
Regulatory Considerations - Were regulatory considerations evaluated? Anadromous fish Federally protected species or State endangered or threatened species NCDWR riparian buffer rule in effect Abuts a Primary Nursery Area (PNA) Publicly owned property N.C. Division of Coastal Management Area of Environmental Concert Abuts a stream with a NCDWQ classification of SA or supplemental Designated NCNHP reference community Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream	rn (AEC) (including buffer)
What type of natural stream is associated with the wetland, if any? (ch	eck all that apply)
 Blackwater Brownwater 	Wind OBoth
Is the assessment area's surface water storage capacity or duration su	ibstantially altered by beaver? CYes • No
Does the assessment area experience overbank flooding during norma	
sedimentation, fire-plow lanes, skidder tracks, bedding,	ce (GS) in the assessment area and vegetation structure
C C Water storage capacity or duration are substantially alter	duration (Surf) and sub-surface storage capacity and ditch ≤ 1 foot deep is considered to affect surface water only,
 Water Storage/Surface Relief – assessment area/wetland type complexity check a box in each column for each group below. Select the appropriate type (WT). AA WT AA WT AA CA Majority of wetland with depressions able to pond B B B Majority of wetland with depressions able to pond G C G C Majority of wetland with depressions able to pond Majority of wetland with depressions able to pond C B C B Majority of wetland with depressions able to pond C C C C Majority of wetland with depressions able to pond C C C C Majority of wetland with depressions able to pond C C C C Majority of wetland with depressions able to pond C C C C C Majority of wetland with depressions able to pond C C C C C Majority of wetland with depressions able to pond C C C C C Majority of wetland with depressions able to pond C C C C C C C C C C C C C C C C C C C	dition metric (skip for all marshes) opriate storage for the assessment area (AA) and the wetland water > 1 foot deep water 6 inches to 1 foot deep
D D Depressions able to pond water < 3 inches deep	

3b. C A Evidence that maximum depth of inundation is greater than 2 feet

- B Evidence that maximum depth of inundation is between 1 and 2 feet
 C Evidence that maximum depth of inundation is less than 1 foot

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

- 4a. 🔿 A Sandy soil
 - ΘB Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
 - ŌС Loamy or clayey soils not exhibiting redoximorphic features
 - ÔD. Loamy or clayey gleyed soil
 - ÔE. Histosol or histic epipedon
- 4b. 💽 A Soil ribbon < 1 inch
 - OВ Soil ribbon \geq 1 inch
- 4c. 💽 A No peat or muck presence
 - OВ A peat or muck presence

Discharge into Wetland – opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- Surf Sub
- ΘA 💿 A Little or no evidence of pollutants or discharges entering the assessment area
- Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the OB OB treatment capacity of the assessment area
- Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and 00 00 potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation. odor)

Land Use – opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M). Effective riparian buffers are considered to be 50 feet wide in the Coastal Plain and Piedmont ecoregions and 30 feet wide in the Blue Ridge Mountains ecoregion. WS 5M 2M

- ΠA ΠA ΠA ≥ 10% impervious surfaces
- БΒ ΠВ 🗆 В Confined animal operations (or other local, concentrated source of pollutants)
- ПС ≥ 20% coverage of pasture
- ≥ 20% coverage of agricultural land (regularly plowed land)
- ΓE ΓE ΓE ≥ 20% coverage of maintained grass/herb
- ΓF EF EF ≥ 20% coverage of clear-cut land □G □G □G

Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent dainage and/or overbank flow from affectio the assessment area.

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
- Yes No If Yes, continue to 7b. If No, skip to Metric 8.
- 7b. How much of the first 50 feet from the bank is weltand? (Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.) ΟA ≥ 50 feet
 - ÖВ
 - From 30 to < 50 feet • C From 15 to < 30 feet
 - ÕD.
 - From 5 to < 15 feet
 - ŏε. < 5 feet or buffer bypassed by ditches
- 7c. Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. > 15-feet wide Other open water (no tributary present) (≤ 15-feet wide
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water?
 - Yes No
- 7e. Is tributary or other open water sheltered or exposed?
 - Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 - Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- 8. Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

- WΤ WC
- OA. OA. ≥ 100 feet
- OB OB From 80 to < 100 feet
- 00 00 From 50 to < 80 feet
- OD OD From 40 to < 50 feet
- ŌE. ΟE From 30 to < 40 feet
- ΦE ΦE From 15 to < 30 feet
- ŌG. ΟG From 5 to < 15 feet
- OH OH < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- $\bigcirc A$ Evidence of short-duration inundation (< 7 consecutive days)
- OВ Evidence of saturation, without evidence of inundation
- ΘC Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)

Consider recent deposition only (no plant growth since deposition).

- ΟA Sediment deposition is not excessive, but at approximately natural levels.
- ΘB Sediment deposition is excessive, but not overwhelming the wetland.
- $\bigcirc C$ Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. W/T WC

- FW (if applicable) ÔΑ O A OA. ≥ 500 acres
- ŌВ ŐВ From 100 to < 500 acres ÖВ
- ÕC. From 50 to < 100 acres
- ğc D ĞC. ŏр From 25 to < 50 acres
- ÖΕ ΘE. ΘE. From 10 to < 25 acres
- ÖE. ÕE. ÖE From 5 to < 10 acres
- ÕG ňg ňg From 1 to < 5 acres
- ŐН ÖΗ. ÖH. From 0.5 to < 1 acre
- ÖL. ÖL ÖL. From 0.1 to < 0.5 acre
- ÖJ. ÖJ. ΟJ. From 0.01 to < 0.1 acre
- ēκ < 0.01 acre or assessment area is clear-cut ΘK ΘK

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- ΟA Pocosin is the full extent (\geq 90%) of its natural landscape size.
- Pocosin is < 90% of the full extent of its natural landscape size. ÖΒ.

13. Connectivity to Other Natural Areas – landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous

metric naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, fields (pasture open and agriculture), or water > 300 feet wide. Well Loosely

- ΟA ≥ 500 acres OA.
- ÖΒ. ÖΒ From 100 to < 500 acres
- ÖC. 00 From 50 to < 100 acres
- ÖD. ΘD From 10 to < 50 acres
- ÖE. < 10 acres ΘE.
 - ÖE. Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Yes No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.

14. Edge Effect - wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear-cut, select option "C."

- OA. 0
- ΘB 1 to 4

ÖE.

ÖC. 5 to 8

15. Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate OA. species, with exotic plants absent or sparse within the assessment area.
- 🕢 B Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-OC. characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ÔÁ. Vegetation diversity is high and is composed primarily of native species (<10% cover of exotics).
- ÕВ Vegetation diversity is low or has > 10% to 50% cover of exotics.
- ÖC. Vegetation is dominated by exotic species (>50% cover of exotics).

17. Vegetative Structure - assessment area/wetland type condition metric

17a. Is vegetation present?

AA

- Yes O No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands.
 - ≥ 25% coverage of vegetation ΘA
 - ÖΒ. < 25% coverage of vegetation

WT

- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.
 - ÔA ÔA Canopy closed, or nearly closed, with natural gaps associated with natural processes
 - ÖВ ÖВ Canopy present, but opened more than natural gaps
 - Canopy Canopy sparse or absent ΘC ΘC
 - A ○ A Dense mid-story/sapling layer
 - Mid-Story ÕВ õв Moderate density mid-story/sapling layer
 - ΘC ΘC Mid-story/sapling layer sparse or absent
 - Shrub ÔΑ Dense shrub layer ΟA
 - 🖲 B 🖲 B Moderate density shrub laver
 - ÖC. ÕC. Shrub layer sparse or absent
 - A A Dense herb laver
 - Herb ÖВ ŐВ Moderate density herb laver
 - ÖC. Herb layer sparse or absent OC.

18. Snags - wetland type condition metric (skip for all marshes)

 $\bigcirc A$ Large snags (more than one) are visible (> 12-inches DBH, or large relative to species present and landscape stability). 🖲 B. Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are O A present.
- ΟB Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12-inch DBH.
- Majority of canopy trees are < 6 inches DBH or no trees. C

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

- Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ΟA
- ΘB Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity - assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only) Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

- Overbank and overland flow are not severely altered in the assessment area. **A**
- 🕢 B Overbank flow is severely altered in the assessment area.
- ÖC Overland flow is severely altered in the assessment area.
- ÖD. Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Classification is based on the reference wetland type that on-site wetlands would become if not maintained.

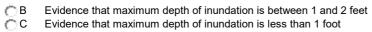
NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name	Wetlands R,Q,S	Date	6/5/19
Wetland Type	Bottomland Hardwood Forest	Assessor Name/Organization	J. Hessler/WEI
Notes on Field Assessme	nt Form (Y/N)		YES
Presence of regulatory co	NO		
Wetland is intensively ma	YES		
Assessment area is locat	YES		
Assessment area is subs	tantially altered by beaver (Y/N)		NO
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)			YES
Assessment area is on a	coastal island (Y/N)		NO

Sub-function Rating Summary

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-Surface Storage and Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence? (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	MEDIUM

Function Rating Summary


Function	Metrics/Notes	Rating
Hydrology	Condition	LOW
Water Quality	Condition	LOW
	Condition/Opportunity	LOW
	Opportunity Presence? (Y/N)	NO
Habitat	Condition	LOW

Overall Wetland Rating

LOW

NC WAM WETLAND ASSESSMENT FORM Accompanies User Manual Version 5

USACE AID#:	NCDWR #:
Project Name Banner Farm Mitigation Site	Date of Evaluation 6/5/19
Applicant/Owner Name Wildlands Engineering Inc. (WEI)	Wetland Site Name Wetlands A,B,C,D,E,F,G,H,I,J,K,L,W
Wetland Type Bottomland Hardwood Forest	Assessor Name/Organization J. Hessler/WEI
Level III Ecoregion Blue Ridge Mountains	Nearest Named Water Body French Broad River
River Basin French Broad	USGS 8-Digit Catalogue Unit 06010105
County Henderson	NCDWR Region Asheville
• Yes ON Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees) 35.351927/-82.55484
 Evidence of stressors affecting the assessment area (may not be Please circle and/or make note on last page if evidence of stressors is appropriate, in recent past (for instance, approximately within 10 years to the following. Hydrological modifications (examples: ditches, dams, beaver of Surface and sub-surface discharges into the wetland (example septic tanks, underground storage tanks (USTs), hog lagoons, Signs of vegetation stress (examples: vegetation mortality, ins Habitat/plant community alteration (examples: mowing, clear-or examples) 	s apparent. Consider departure from reference, if s). Noteworthy stressors include, but are not limited dams, dikes, berms, ponds, etc.) s: discharges containing obvious pollutants, presence of nearby etc.) sect damage, disease, storm damage, salt intrusion, etc.)
Is the assessment area intensively managed? (• Yes	lo
Regulatory Considerations - Were regulatory considerations evalue Anadromous fish - Federally protected species or State endangered or threatened NCDWR riparian buffer rule in effect - Abuts a Primary Nursery Area (PNA) Publicly owned property N.C. Division of Coastal Management Area of Environmental C Abuts a stream with a NCDWQ classification of SA or supplem Designated NCNHP reference community Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed str	d species Concern (AEC) (including buffer) nental classifications of HQW, ORW, or Trout ream
What type of natural stream is associated with the wetland, if any Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar	© Wind © Both
Is the assessment area on a coastal island? OYes I Yes	
Is the assessment area's surface water storage capacity or durati	
Does the assessment area experience overbank flooding during i	normal rainfall conditions?
sedimentation, fire-plow lanes, skidder tracks, be	l surface (GS) in the assessment area and vegetation structure oplicable (see User Manual). If a reference is not applicable, nt area (ground surface alteration examples: vehicle tracks, excessive dding, fill, soil compaction, obvious pollutants) (vegetation structure rbicides, salt intrusion [where appropriate], exotic species, grazing,
 while a ditch > 1 foot deep is expected to affect both surface and Surf Sub A A A Water storage capacity and duration are not alter B B Water storage capacity or duration are altered, but for C C Water storage capacity or duration are substantial 	ty and duration (Surf) and sub-surface storage capacity and gy. A ditch ≤ 1 foot deep is considered to affect surface water only, I sub-surface water. Consider tidal flooding regime, if applicable.
3. Water Storage/Surface Relief – assessment area/wetland type	e condition metric (skip for all marshes) e appropriate storage for the assessment area (AA) and the wetland pond water > 1 foot deep pond water 6 inches to 1 foot deep pond water 3 to 6 inches deep

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

- 4a. 💽 A Sandy soil
 - ÖВ Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
 - õc Loamy or clayey soils not exhibiting redoximorphic features
 - ÖD. Loamy or clayey gleyed soil
 - ÔE. Histosol or histic epipedon
- 4b. 🔿 A Soil ribbon < 1 inch
 - ΘB Soil ribbon \geq 1 inch
- 4c. 🔿 A No peat or muck presence
 - ΘB A peat or muck presence

Discharge into Wetland – opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- Surf Sub
- O A Little or no evidence of pollutants or discharges entering the assessment area $\cap A$
- ÔВ Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the OB. treatment capacity of the assessment area
- ○C ○C Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation. odor)

Land Use – opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M). Effective riparian buffers are considered to be 50 feet wide in the Coastal Plain and Piedmont ecoregions and 30 feet wide in the Blue Ridge Mountains ecoregion. WS 5M 2M

- ΠA ΠA ΠA ≥ 10% impervious surfaces
- БΒ ΠВ 🗆 В Confined animal operations (or other local, concentrated source of pollutants)
- ПС ≥ 20% coverage of pasture
- ≥ 20% coverage of agricultural land (regularly plowed land)
- ΓE ΓE ΓE ≥ 20% coverage of maintained grass/herb
- F EF EF ≥ 20% coverage of clear-cut land □G □G □G

Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent dainage and/or overbank flow from affectio the assessment area.

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
- Yes No If Yes, continue to 7b. If No, skip to Metric 8.
- 7b. How much of the first 50 feet from the bank is weltand? (Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.) ΟA ≥ 50 feet
 - ΟB
 - From 30 to < 50 feet
 - ÖC. From 15 to < 30 feet ŏD.
 - From 5 to < 15 feet
 - ΘE < 5 feet or buffer bypassed by ditches
- 7c. Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. > 15-feet wide Other open water (no tributary present) (≤ 15-feet wide
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water?
 - Yes ONO
- 7e. Is tributary or other open water sheltered or exposed?
 - Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 - Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- 8. Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries.

- WΤ WC
- OA. O A ≥ 100 feet
- OB OB From 80 to < 100 feet
- 00 00 From 50 to < 80 feet
- ÖD ÖD From 40 to < 50 feet
- OE. ΟE From 30 to < 40 feet
- ÔE. ÔE. From 15 to < 30 feet
- 🖲 G 💽 G From 5 to < 15 feet
- OH-ЮH < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- $\bigcirc A$ Evidence of short-duration inundation (< 7 consecutive days)
- OВ Evidence of saturation, without evidence of inundation
- ΘC Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition – assessment area condition metric (skip for non-riparian wetlands and all marshes)

Consider recent deposition only (no plant growth since deposition).

- ΟA Sediment deposition is not excessive, but at approximately natural levels.
- ÔB. Sediment deposition is excessive, but not overwhelming the wetland.
- Ω Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. W/T WC FW (if applicable)

- ÔΑ O A OA. ≥ 500 acres
- ŌВ ŐВ From 100 to < 500 acres ÖВ
- ÖC. From 50 to < 100 acres
- ğc D ğc. ŏр From 25 to < 50 acres
- ĞΕ. ΘE. ΞÖE. From 10 to < 25 acres
- ÕF. ÖE. ÕE -From 5 to < 10 acres
- ÕG õg õg From 1 to < 5 acres
- ΘH ΘH ÖH From 0.5 to < 1 acre
- ÖL. ÖL. ÖL. From 0.1 to < 0.5 acre
- ÖJ. ÖJ. ΟJ. From 0.01 to < 0.1 acre
- ŌΚ ŌΚ ēκ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- ΟA Pocosin is the full extent (\geq 90%) of its natural landscape size.
- Pocosin is < 90% of the full extent of its natural landscape size. ÖΒ.

13. Connectivity to Other Natural Areas – landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous

metric naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, fields (pasture open and agriculture), or water > 300 feet wide. Well Loosely

- ΟA ≥ 500 acres OA.
- ÖВ ÖΒ. From 100 to < 500 acres
- ÖC. ΘC From 50 to < 100 acres
- бÞ 💿 D From 10 to < 50 acres
- ŐE. ÖE < 10 acres
 - ÖE. Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Yes No Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands.

14. Edge Effect - wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear-cut, select option "C."

- OA. 0
- ΘB 1 to 4

ÖE.

ÖC. 5 to 8

15. Vegetative Composition – assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate OA. species, with exotic plants absent or sparse within the assessment area.
- Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species OB. characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of non-ΘC characteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- Vegetation diversity is high and is composed primarily of native species (<10% cover of exotics). ÔA.
- ΘB Vegetation diversity is low or has > 10% to 50% cover of exotics.
- ÖC. Vegetation is dominated by exotic species (>50% cover of exotics).

17. Vegetative Structure - assessment area/wetland type condition metric

17a. Is vegetation present?

AA

- Yes O No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands.
 - ÔΑ ≥ 25% coverage of vegetation
 - ÖΒ. < 25% coverage of vegetation

WT

- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.
 - ÔA ÔA Canopy closed, or nearly closed, with natural gaps associated with natural processes
 - ŐВ ÖВ Canopy present, but opened more than natural gaps
 - Canopy Canopy sparse or absent ΘC ΘC
 - A Dense mid-story/sapling layer ○ A
 - Mid-Story ÕВ õв Moderate density mid-story/sapling layer
 - ΘC ΘC Mid-story/sapling layer sparse or absent
 - Shrub ÔA Dense shrub layer ○ A
 - ŐВ ŐВ Moderate density shrub laver
 - ΘC ΘC Shrub layer sparse or absent
 - ΟA ΟA Dense herb laver
 - Herb ΘB ΘB Moderate density herb laver
 - Herb layer sparse or absent OC. O C

18. Snags - wetland type condition metric (skip for all marshes)

 $\bigcirc A$ Large snags (more than one) are visible (> 12-inches DBH, or large relative to species present and landscape stability). 🖲 B. Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are O A present.
- ΟB Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12-inch DBH.
- Majority of canopy trees are < 6 inches DBH or no trees. C

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

- Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability). ΟA
- ΘB Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity - assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only) Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

- Overbank and overland flow are not severely altered in the assessment area. **A**
- ÔВ Overbank flow is severely altered in the assessment area.
- ÖC. Overland flow is severely altered in the assessment area.
- ΘD Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Classification is based on the reference wetland type that on-site wetlands would become if not maintained.

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name	Wetlands A,B,C,D,E,F,G,H,I,J,K,L,W	Date_	6/5/19
Wetland Type	Bottomland Hardwood Forest	Assessor Name/Organization	J. Hessler/WEI
Notes on Field Assessment Form (Y/N)		YES	
Presence of regulatory considerations (Y/N)		NO	
Wetland is intensively managed (Y/N)		YES	
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)		YES	
Assessment area is substantially altered by beaver (Y/N)		NO	
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)		YES	
Assessment area is on a coastal island (Y/N)		NO	

Sub-function Rating Summary

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-Surface Storage and Retention	Condition	HIGH
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
Physical Change Pollution Change		Opportunity Presence? (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence? (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence? (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW

Function Rating Summary

Function	Metrics/Notes	Rating
Hydrology	Condition	MEDIUM
Water Quality	Condition	LOW
	Condition/Opportunity	LOW
	Opportunity Presence? (Y/N)	NO
Habitat	Condition	LOW

Overall Wetland Rating

LOW

APPENDIX 4 Categorical Exclusion Documentation and Agency Correspondence

Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Part	1: General Project Information	
Project Name:	Banner Farm Mitigation Site	
County Name:	Henderson County	
DMS Number:	100062	
Project Sponsor:	Wildlands Engineering, Inc	
Project Contact Name:	Andrea Eckardt	
Project Contact Address:	1430 South Mint Street, Suite 104, Charlotte, NC, 28203	
Project Contact E-mail:	aeckardt@wildlandseng.com	
DMS Project Manager:	Matthew Reid	
	Project Description	
northwest of Hendersonville and 6 Banner Creek and two associated tr stream mitigation credits and 16.0 v	te) is located in Henderson County, NC approximately 6 miles miles southwest of Fletcher. The project limits include ibutaries which drain to the French Broad River for a total of 6,194 wetlands mitigation credits. The Site will protect 26 acres of land and edit in the French Broad Catalog Unit 06010105.	
	For Official Use Only	
Reviewed By:	i or ornolar osc only	
<u>I-//- 2019</u> Date Conditional Approved By:	DMS Project Manager	
Date	For Division Administrator FHWA	
Check this box if there are	outstanding issues	
Final Approval By:	AhB	
Date	For Division Administrator	

July 24, 2018

Renee Gledhill-Earley State Historic Preservation Office 4617 Mail Service Center Raleigh, NC 27699-4617

Subject: Banner Farm Mitigation Site Henderson, North Carolina

Dear Ms. Gledhill-Earley,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the Banner Farm Mitigation Site, a stream and wetland mitigation site located in Henderson County, NC. A Concept Map and USGS Topographic Map with approximate project areas are enclosed. The topographic figure was prepared from the Horse Shoe, NC (2016) USGS 7.5 Topographic Quadrangle, and the site is located at latitude 35.351469, longitude -82.556080.

The Banner Farm Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. Several sections of channel have been identified as significantly degraded. This project will include wetland restoration along with stream restoration and enhancement of Banner Creek and two associated tributaries which drain to the French Broad River. Furthermore, no archeological artifacts have been observed or noted during preliminary surveys of the site for restoration purposes.

We ask that you review this site based on the attached information to determine the presence of any historic properties.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning the project.

Sincerely,

Greg Pierce Environmental Scientist

<u>Attachment</u>: Figure 1 Concept Map Figure 2 USGS Topographic Map

North Carolina Department of Natural and Cultural Resources

State Historic Preservation Office

Ramona M. Bartos, Administrator

Governor Roy Cooper Secretary Susi H. Hamilton

August 21, 2018

Greg Pierce Wildlands Engineering 1430 South Mint Street, Suite 104 Charlotte, NC 28203

Re: Banner Farm Mitigation Site, Henderson County, ER 18-1785

Dear Mr. Pierce:

Thank you for your letter of July 24, 2018, concerning the above project.

There are no known recorded archaeological sites within the project boundaries. There are two previously recorded sites in close proximity to project area. However, the project area has never been systematically surveyed to determine the location or significance of archaeological resources. Based on the topographic and hydrological situation and the density of archaeological sites in the area, there is a high probability for the presence of prehistoric or historic archaeological sites.

We recommend that a comprehensive survey be conducted by an experienced archaeologist to identify and evaluate the significance of archaeological remains that may be damaged or destroyed by the proposed project. Potential effects on unknown resources must be assessed prior to the initiation of construction activities.

Two paper copies and one digital copy of the resulting archaeological survey report, as well as one paper and one digital copy of the appropriate site forms, should be forwarded to us for review and comment as soon as they are available and well in advance of any construction activities.

A list of archaeological consultants who have conducted or expressed an interest in contract work in North Carolina is available at <u>www.archaeology.ncdcr.gov/ncarch/resource/consultants.htm</u>. The archaeologists listed, or any other experienced archaeologist, may be contacted to conduct the recommended survey.

We have determined that the project as proposed will not have an effect on any historic structures.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579 or <u>environmental.review@ncdcr.gov</u>. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely, Perce Gledhill-Earley

Ramona M. Bartos

Office of Archives and History Deputy Secretary Kevin Cherry

North Carolina Department of Natural and Cultural Resources

State Historic Preservation Office

Ramona M. Bartos, Administrator

Governor Roy Cooper Secretary Susi H. Hamilton

November 27, 2018

Andrea S. Eckardt Wildlands Engineering, Inc. 1430 Mint Street, Suite 104 Charlotte, NC 28203

Re: Banner Farm Mitigation Site, Henderson County, ER 18-1785

Dear Ms. Eckardt:

Thank you for your letter of November 1, 2018, transmitting the archaeological survey report by Archaeological Consultants of the Carolinas, Inc. (ACC) for the above project.

During the course of the survey, no sites were located within the project area. ACC has recommended that no further archaeological investigation be conducted in connection with this project. We concur with this recommendation since the project will not involve significant archaeological resources.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919-814-6579 or <u>environmental.review@ncdcr.gov</u>. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely,

Rence Gledhill-Earley

🔊 Ramona M. Bartos

cc: Luan Cao, Archaeological Consultants of the Carolinas

Office of Archives and History Deputy Secretary Kevin Cherry

July 24, 2018

Mr. Russell Townsend Tribal Historic Preservation Officer Eastern Band of Cherokee Indians PO Box 455 Henderson, NC 28719

Subject: Banner Farms Mitigation Site Henderson County, North Carolina

Dear Mr. Townsend,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the Banner Farm Mitigation Site, a stream and wetland mitigation site located in Henderson County, NC. A Concept Map and USGS Topographic Map with approximate project areas are enclosed. The topographic figure was prepared from the Horse Shoe, NC (2016) USGS 7.5 Topographic Quadrangle, and the site is located at latitude 35.351469, longitude -82.556080.

The Banner Farms Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. This project will include wetland restoration along with stream restoration and enhancement of Banner Creek and two associated tributaries which drain to the French Broad River. Several sections of channel have been identified as significantly degraded. Furthermore, no archeological artifacts have been observed or noted during preliminary surveys of the site for restoration purposes.

We ask that you review this site based on the attached information to determine the presence of any historic properties.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning the project.

Sincerely,

Greg Pierce Environmental Scientist

<u>Attachment</u>: Figure 1 Concept Map Figure 2 USGS Topographic Map

cc: via email Ms. Holly Austin, Federal Cultural Resource Law Liaison, EBCI Tribal Historic Preservation Office Mr. Donnie Brew, Federal Highway Administration Mr. Matthew Reid, Division of Mitigation Services

Andrea Eckardt

From:	Wiesner, Paul <paul.wiesner@ncdenr.gov></paul.wiesner@ncdenr.gov>
Sent:	Friday, November 30, 2018 2:55 PM
То:	sbird@ukb-nsn.gov
Cc:	Donnie.Brew@dot.gov; Reid, Matthew; Andrea Eckardt; Eric Neuhaus
Subject:	Banner Farm Mitigation Site - NCDEQ: DMS - Henderson County, North Carolina
Attachments:	Banner Farm_100062_Keetoowah_11-30-18.pdf

Good afternoon Ms. Bird,

The North Carolina Department of Environmental Quality (NCDEQ) – Division of Mitigation Services (DMS) requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Banner Farms Mitigation Site.

Project information, a Phase I Identification Survey performed by Archaeological Consultants of the Carolinas, Inc (ACC), and SHPO documentation are attached for your review.

Please let us know if you have any questions or need any additional information.

Thanks

Paul Wiesner Western Regional Supervisor North Carolina Department of Environmental Quality Division of Mitigation Services

828-273-1673 Mobile paul.wiesner@ncdenr.gov

Western DMS Field Office 5 Ravenscroft Drive Suite 102 Asheville, N.C. 28801

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

Andrea Eckardt

From:	Wiesner, Paul <paul.wiesner@ncdenr.gov></paul.wiesner@ncdenr.gov>
Sent:	Friday, November 30, 2018 2:49 PM
То:	Elizabeth Toombs
Cc:	Donnie.Brew@dot.gov; Reid, Matthew; Andrea Eckardt; Eric Neuhaus
Subject:	Banner Farm Mitigation Site - NCDEQ: DMS - Henderson County, North Carolina
Attachments:	Banner Farm_100062_Cherokee Nation_11-30-18.pdf

Good afternoon Ms. Toombs,

The North Carolina Department of Environmental Quality (NCDEQ) – Division of Mitigation Services (DMS) requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Banner Farms Mitigation Site.

Project information, a Phase I Identification Survey performed by Archaeological Consultants of the Carolinas, Inc (ACC), and SHPO documentation are attached for your review.

Please let us know if you have any questions or need any additional information.

Thanks

Paul Wiesner Western Regional Supervisor North Carolina Department of Environmental Quality Division of Mitigation Services

828-273-1673 Mobile paul.wiesner@ncdenr.gov

Western DMS Field Office 5 Ravenscroft Drive Suite 102 Asheville, N.C. 28801

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

December 21, 2018

Paul Wiesner North Carolina Department of Environmental Quality Western DMS Field Office 5 Ravenscroft Drive, Suite 102 Asheville, NC 28801

Re: Banner Farms Mitigation Site

Mr. Paul Wiesner:

The Cherokee Nation (Nation) is in receipt of your correspondence about and report for the **Banner Farms Mitigation Site**, and appreciates the opportunity to provide comment upon this project. Please allow this letter to serve as the Nation's interest in acting as a consulting party to this proposed undertaking.

GWY9 D8P

CHEROKEE NATION P.O. Box 948 • Tablequah. OK 74465-0948 • 918-453-5000 • cherokee.org

The Nation maintains databases and records of cultural, historic, and pre-historic resources in this area. Our Historic Preservation Office reviewed this project, cross referenced the project's legal description against our information, and found no instances where this project intersects or adjoins such resources. Thus, the Nation does not foresee this project imparting impacts to Cherokee cultural resources at this time.

However, the Nation requests that the North Carolina Department of Environmental Quality (NCDEQ) halt all project activities immediately and re-contact our Offices for further consultation if items of cultural significance are discovered during the course of this project.

Additionally, the Nation requests that NCDEQ conduct appropriate inquiries with other pertinent Tribal and Historic Preservation Offices regarding historic and prehistoric resources not included in the Nation's databases or records.

If you require additional information or have any questions, please contact me at your convenience. Thank you for your time and attention to this matter.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office elizabeth-toombs@cherokee.org 918.453.5389

Office of the Chief

Bill John Baker Principal Chief OP Gh JSS&JY OEOGA

S. Joe Crittenden Deputy Principal Chief መ. KG. JEሃመሃ WPA DLሪብ ውደፅርብ

July 24, 2018

Marella Buncick US Fish and Wildlife Service Asheville Field Office 160 Zillicoa Street Asheville, NC 28801

Subject: Banner Farm Mitigation Site Henderson County, North Carolina

Dear Ms. Buncick,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to endangered species, migratory birds, or other trust resources associated with the proposed Banner Farm Mitigation Site, a stream and wetland mitigation site located in Henderson County, NC. A USGS Topographic Map and a Concept Map showing the approximate project area are enclosed. The topographic figure was prepared from the Horse Shoe, NC (2016) USGS 7.5 Topographic Quadrangle and the site is located at latitude 35.351469, longitude -82.556080.

The Banner Farm Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. This project will include wetland restoration along with stream restoration and enhancement of Banner Creek and two associated tributaries which drain to the French Broad River. Several sections of channel have been identified as significantly degraded.

According to your website (https://www.fws.gov/raleigh/species/cntylist/henderson.html) the threatened or endangered species for Lincoln County are: The Bald eagle (*Haliaeetus leucocephalus*), the Bog turtle (*Glyptemys muhlenbergii*), the Carolina northern flying squirrel (*Glaucomys sabrinus coloratus*), the Gray bat (*Myotis grisescens*), the Northern long-eared bat (*Myotis septentrionalis*), the Appalachian elktoe (*Alasmidonta raveneliana*), the Rusty-patched bumble bee (*Bombus affinis*), the Bunched arrowhead (*Sagittaria fasciculata*), the Mountain sweet pitcher plant (*Sarracenia rubra ssp. Jonesii*), the Small whorled pogonia (*Isotria medeoloides*), the Swamp pink (*Helonias bullata*), the White fringeless orchid (*Platanthera integrilabia*), and the White irisette (*Sisyrinchium dichotomum*). If we have not heard from you in 30 days, we will assume that you do not have any comments regarding associated laws and that you do not have any information relevant to this project at the current time.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

Greg Pierce Environmental Scientist

<u>Attachment</u>: Figure 1 Concept Map Figure 2 USGS Topographic Map

Andrea Eckardt

From:	Brew, Donnie (FHWA) <donnie.brew@dot.gov></donnie.brew@dot.gov>
Sent:	Wednesday, November 28, 2018 12:41 PM
То:	Marella_Buncick@fws.gov
Cc:	Reid, Matthew; Wiesner, Paul; Andrea Eckardt
Subject:	Banner Farm site DMS_mitigation project_Henderson County_NLEB 4(d) rule consultation
Attachments:	Banner Farm site Figure 1 Concept Map.pdf; Banner Farm site Figure 2 USGS Topo Map.pdf; Banner
	Farm site NLEB 4(d) rule Consultation form 11-28-18.pdf

Good afternoon Marella,

The purpose of this message is to notify your office that FHWA will use the NLEB streamlined consultation framework for the Banner Farm Mitigation Site in Henderson County, NC.

Attached is a completed NLEB 4(d) Rule Streamlined Consultation form and site maps/figures.

Thank you,

Donnie

Notifying the Service Under the Framework

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies (or designated non-federal representatives) should use the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation form to notify the Service of their project and meet the requirements of the framework.

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form (Word document)

Information requested in the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form serves to

(1) notify the field office that an action agency will use the streamlined framework;

(2) describe the project with sufficient detail to support the required determination; and

(3) enable the USFWS to track effects and determine if reinitiation of consultation for the 4(d) rule is required. This form requests the minimum amount of information required for the Service to be able to track this information.

Providing information in the Streamlined Consultation Form does not address section 7(a)(2) compliance for any other listed species.

Donnie Brew Preconstruction & Environment Engineer Federal Highway Administration 310 New Bern Ave, Suite 410 Raleigh, NC 27601 donnie.brew@dot.gov 919-747-7017

Please consider the environment before printing this email.

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies should use this form for the optional streamlined consultation framework for the northern longeared bat (NLEB). This framework allows federal agencies to rely upon the U.S. Fish and Wildlife Service's (USFWS) January 5, 2016, intra-Service Programmatic Biological Opinion (BO) on the final 4(d) rule for the NLEB for section 7(a)(2) compliance by: (1) notifying the USFWS that an action agency will use the streamlined framework; (2) describing the project with sufficient detail to support the required determination; and (3) enabling the USFWS to track effects and determine if reinitiation of consultation is required per 50 CFR 402.16.

This form is not necessary if an agency determines that a proposed action will have no effect to the NLEB or if the USFWS has concurred in writing with an agency's determination that a proposed action may affect, but is not likely to adversely affect the NLEB (i.e., the standard informal consultation process). Actions that may cause prohibited incidental take require separate formal consultation. Providing this information does not address section 7(a)(2) compliance for any other listed species.

Information to Determine 4(d) Rule Compliance:	YES	NO
1. Does the project occur wholly outside of the WNS Zone ¹ ?		\mathbb{X}
2. Have you contacted the appropriate agency ² to determine if your project is near known hibernacula or maternity roost trees?	\boxtimes	
3. Could the project disturb hibernating NLEBs in a known hibernaculum?		\boxtimes
4. Could the project alter the entrance or interior environment of a known hibernaculum?		\boxtimes
5. Does the project remove any trees within 0.25 miles of a known hibernaculum at any time of year?		\boxtimes
6. Would the project cut or destroy known occupied maternity roost trees, or any other trees within a 150-foot radius from the maternity roost tree from June 1 through July 31.		\boxtimes

You are eligible to use this form if you have answered yes to question #1 <u>or</u> yes to question #2 <u>and</u> no to questions 3, 4, 5 and 6. The remainder of the form will be used by the USFWS to track our assumptions in the BO.

Agency and Applicant³ (Name, Email, Phone No.): FHWA, Donnie Brew, <u>Donnie.brew@dot.gov</u>, 919-747-7017

Project Name: Banner Farm Mitigation Site

Project Location (include coordinates if known): 35.351469 (N), -82.556080 (W)

Basic Project Description (provide narrative below or attach additional information):

The Banner Farm Mitigation Site (Site) is located in Henderson County, NC approximately 6 miles northwest of Hendersonville and 6 miles southwest of Fletcher. The project limits include Banner Creek and two associated tributaries which drain to the French Broad River for a total of 6,194 linear feet of stream. Additionally, the site features two wetlands totaling 16 acres. The Site is being submitted for mitigation credit in the French Broad Catalog Unit 06010105. Construction of the stream and wetland mitigation project will include some tree removal (>3" DBH) – approximately 0.25 acres

¹ http://www.fws.gov/midwest/endangered/mammals/nleb/pdf/WNSZone.pdf

² See http://www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html

³ If applicable - only needed for federal actions with applicants (e.g., for a permit, etc.) who are party to the consultation.

General Project Information	YES	NO
Does the project occur within 0.25 miles of a known hibernaculum?		\boxtimes
Does the project occur within 150 feet of a known maternity roost tree?		
Does the project include forest conversion4? (if yes, report acreage below)		
Estimated total acres of forest conversion	0.2:	5 ac
If known, estimated acres ⁵ of forest conversion from April 1 to October 31		
If known, estimated acres of forest conversion from June 1 to July 316		
Does the project include timber harvest? (if yes, report acreage below)		\boxtimes
Estimated total acres of timber harvest		_
If known, estimated acres of timber harvest from April 1 to October 31		-
If known, estimated acres of timber harvest from June 1 to July 31		
Does the project include prescribed fire? (if yes, report acreage below)		\boxtimes
Estimated total acres of prescribed fire	-1	
If known, estimated acres of prescribed fire from April 1 to October 31		
If known, estimated acres of prescribed fire from June 1 to July 31		
Does the project install new wind turbines? (if yes, report capacity in MW below)		\boxtimes
Estimated wind capacity (MW)		-

Agency Determination:

By signing this form, the action agency determines that this project may affect the NLEB, but that any resulting incidental take of the NLEB is not prohibited by the final 4(d) rule.

If the USFWS does not respond within 30 days from submittal of this form, the action agency may presume that its determination is informed by the best available information and that its project responsibilities under 7(a)(2) with respect to the NLEB are fulfilled through the USFWS January 5, 2016, Programmatic BO. The action agency will update this determination annually for multi-year activities.

The action agency understands that the USFWS presumes that all activities are implemented as described herein. The action agency will promptly report any departures from the described activities to the appropriate USFWS Field Office. The action agency will provide the appropriate USFWS Field Office with the results of any surveys conducted for the NLEB. Involved parties will promptly notify the appropriate USFWS Field Office upon finding a dead, injured, or sick NLEB.

Signature:

Date Submitted: 11-28-18

⁴ Any activity that temporarily or permanently removes suitable forested habitat, including, but not limited to, tree removal from development, energy production and transmission, mining, agriculture, etc. (see page 48 of the BO).

⁵ If the project removes less than 10 trees and the acreage is unknown, report the acreage as less than 0.1 acre.

⁶ If the activity includes tree clearing in June and July, also include those acreage in April to October.

Andrea Eckardt

From:	Andrea Eckardt
Sent:	Tuesday, November 27, 2018 3:46 PM
То:	Cortes, Milton - NRCS, Raleigh, NC
Subject:	Banner Farm Mitigation Site - Completed Ad1006 Form - Henderson County
Attachments:	Appendix 9 Banner- AD1006 Final Completed.pdf

Milton-Attached is the completed AD1006 for the Banner Farms Mitigation Site for your files.

Thank you for your time

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

Wildlands Engineering, Inc. 1430 S. Mint St, Suite 104 Charlotte, NC 28203

U.S. Department of Agriculture

FARMLAND CONVERSION IMPACT RATING

DADT 1/To be completed by Foderal Agency	Date Of Land Evaluation Request					
PART I (To be completed by Federal Agency)						
Name Of Project	Federal Agency Involved					
Proposed Land Use	County And	d State				
PART II (To be completed by NRCS)	Date Requ	est Received By N	IRCS			
Does the site contain prime, unique, statewide	or local important fa	armland?	Yes N	Acres Irrigated	Average Farm	n Size
(If no, the FPPA does not apply do not com	plete additional part	ts of this form)	. 🗌 🗌			
Major Crop(s)	Farmable Land In C Acres:	Govt. Jurisdictior	າ %	Amount Of Far Acres:	mland As Define	ed in FPPA %
Name Of Land Evaluation System Used	Name Of Local Site	e Assessment S	ystem	Date Land Eva	luation Returned	By NRCS
PART III (To be completed by Federal Agency)				Alternative S	ite Rating	
			Site A	Site B	Site C	Site D
A. Total Acres To Be Converted Directly						
B. Total Acres To Be Converted Indirectly						
C. Total Acres In Site						
PART IV (To be completed by NRCS) Land Eva	luation Information					
A. Total Acres Prime And Unique Farmland						
B. Total Acres Statewide And Local Importan	t Farmland					
C. Percentage Of Farmland In County Or Loc	al Govt. Unit To Be	Converted				
D. Percentage Of Farmland In Govt. Jurisdiction W	ith Same Or Higher Re	lative Value				
PART V (To be completed by NRCS) Land Eval Relative Value Of Farmland To Be Conve		100 Points)				
PART VI (To be completed by Federal Agency) Site Assessment Criteria (These criteria are explained in	7 CFR 658.5(b)	Maximum Points				
1. Area In Nonurban Use						
2. Perimeter In Nonurban Use						
3. Percent Of Site Being Farmed						
4. Protection Provided By State And Local Ge	overnment					
5. Distance From Urban Builtup Area						
6. Distance To Urban Support Services						
7. Size Of Present Farm Unit Compared To A	Verage					
8. Creation Of Nonfarmable Farmland						
9. Availability Of Farm Support Services						
10. On-Farm Investments						
11. Effects Of Conversion On Farm Support S						
12. Compatibility With Existing Agricultural Use						
TOTAL SITE ASSESSMENT POINTS	160					
PART VII (To be completed by Federal Agency)						
Relative Value Of Farmland (From Part V)		100				
Total Site Assessment (From Part VI above or a loca site assessment)		160				
TOTAL POINTS (Total of above 2 lines)		260				
Site Selected:	Date Of Selection			Was A Local Site / Yes		ed? o
				res		<u> </u>

Reason For Selection:

July 24, 2018

Shannon Deaton North Carolina Wildlife Resource Commission Division of Inland Fisheries 1721 Mail Service Center Raleigh, NC 27699

Subject: Banner Farm Mitigation Site Henderson County, North Carolina

Dear Ms. Deaton,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to fish and wildlife issues associated with the proposed Banner Farms Mitigation Site, a stream and wetland mitigation site located in Henderson County, NC. A USGS Topographic Map and a Concept Map showing the approximate project area are enclosed. The topographic figure was prepared from the Horse Shoe, NC (2016) USGS 7.5 Topographic Quadrangle, and the site is located at latitude 35.351469, longitude -82.556080.

The Banner Farm Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel and riparian wetland impacts. This project will include wetland restoration along with stream restoration and enhancement of Banner Creek and two associated tributaries which drain to the French Broad River. Several sections of channel have been identified as significantly degraded.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

Greg Pierce Environmental Scientist

<u>Attachment</u>: Figure 1 Concept Map Figure 2 USGS Topographic Map

⊟ North Carolina Wildlife Resources Commission

Gordon Myers, Executive Director

August 8, 2018

Greg Pierce Wildlands Engineering 1430 S. Mint Street, Suite 104 Charlotte, NC 28203

SUBJECT: Banner Farm Mitigation Site

Dear Mr. Pierce:

Biologists with the North Carolina Wildlife Resources Commission (NCWRC) received your July 24, 2018 letter regarding plans for a wetland and stream restoration project on unnamed tributaries to the French Broad River in Henderson County. You requested review and comment on any possible issues that might emerge with respect to fish and wildlife associated with the project. Our comments on this project are offered for your consideration under provisions of the Clean Water Act of 1977 (33 U.S.C. 466 et. seq.) and Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661-667d).

Details were not provided in the letter on design nor the size of the project. The project is proposed as a mitigation project and will involve stream enhancement and restoration.

This project should not impact wild trout resources. We recommend that riparian buffers that are to be reestablished be as wide as possible, given site constraints and landowner needs. NCWRC generally recommends a woody buffer of 100 feet on perennial streams to maximize the benefits of buffers, including bank stability, stream shading, treatment of overland runoff, and wildlife habitat.

Thank you for the opportunity to review and comment on this project. Please contact me at (828) 803-6054 if you have any questions about these comments.

Sincerely,

Indrea Delescie

Andrea Leslie Mountain Region Coordinator Habitat Conservation Program

APPENDIX 5 Stream Identification Forms

NC SAM FIELD ASSESSMENT FORM

Accompanies User Manual Version 2.1

				and the second
USACE AID #:			NCDWR #	
INSTRUCTIONS: Attach a	a sketch of the assessm	nent area and pho	tographs. Attach a copy c	of the USGS 7.5-minute topographic
quadrangle, and circle the lo	cation of the stream reac	h under evaluation.	If multiple stream reaches w	ill be evaluated on the same property,
detailed descriptions and ex	ches on the attached ma	p, and include a se	eparate form for each reach.	See the NC SAM User Manual for supplementary measurements were
performed. See the NC SAM	I User Manual for example	es of additional mea	asurements that may be relev	supplementary measurements were
NOTE EVIDENCE OF STRE	SSORS AFFECTING TH	E ASSESSMENT A	REA (do not need to be wit	hin the assessment area
PROJECT/SITE INFORMAT				area .
1. Project name (if any):	BannerFai	mS 2.	Date of evaluation: 17	118/2018
3. Applicant/owner name:	Wildlands	the second s	Assessor name/organization	
5. County:	Henderso		Nearest named water body	
7. River basin:	Frenchei	000	on USGS 7.5-minute quad:	FrenchBroad River
8. Site coordinates (decimal o			35,35329	-82.55893
STREAM INFORMATION: (c	depth and width can be a	approximations)		
9. Site number (show on atta 11. Channel depth from bed ((in riffle if present) to top	Alek Lat 10. Len	ngth of assessment reach eva	
12. Channel width at top of ba	ank (feet): (\bigcirc)		sessment reach a swamp stre	Unable to assess channel depth.
14. Feature type: Perennia		V Tidal Marsh St	ream	
STREAM CATEGORY INFO	RMATION:			
15. NC SAM Zone:	Mountains (M)	Piedmont (P)	Inner Coastal Plain (I)	Outer Coastal Plain (O)
16. Estimated geomorphic				
valley shape (skip for				
Tidal Marsh Stream):	(more sinuous stream	n, flatter valley slope		stream, steeper valley slope)
17. Watershed size: (skip	☐Size 1 (< 0.1 mi²)	, - ,	• •	
for Tidal Marsh Stream)	\mathcal{F}		
ADDITIONAL INFORMATION				
K18. Were regulatory consider:	ations evaluated? Myes Classified Tr	No If Yes, check	k all that apply to the assess	
			Vivater Supply Wat	
Essential Fish Habitat		iery Area	High Quality Wate	rs/Outstanding Resource Waters
	Primary Nurs		High Quality Wate ffect INutrient Sensitive	rs/Outstanding Resource Waters Waters
Essential Fish Habitat Publicly owned propert Anadromous fish	Primary Nurs y ONCDWR ripa 0303(d) List	ery Area Irian buffer rule in ei	High Quality Wate ffect INutrient Sensitive	rs/Outstanding Resource Waters Waters vironmental Concern (AEC)
Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species:	Primary Nurs y INCDWR ripa 303(d) List of a federal and/or state i	ery Area Irian buffer rule in ei	High Quality Wate ffect INutrient Sensitive	rs/Outstanding Resource Waters Waters vironmental Concern (AEC)
Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hab	Primary Nurs y DNCDWR ripa [303(d) List of a federal and/or state i bitat (list species)	eery Area Irian buffer rule in el isted protected spec	High Quality Wate ffect INutrient Sensitive CAMA Area of Em cles within the assessment ar	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea.
Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species:	Primary Nurs y DNCDWR ripa [303(d) List of a federal and/or state i bitat (list species)	eery Area Irian buffer rule in el isted protected spec	High Quality Wate ffect INutrient Sensitive CAMA Area of Em cles within the assessment ar	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea.
Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream infor	Primary Nurs y DNCDWR ripa [303(d) List of a federal and/or state i bitat (list species) rmation/supplementary m	ery Area Irian buffer rule in el isted protected spec easurements includ	High Quality Wate ffect INutrient Sensitive CAMA Area of Em cles within the assessment ar led in "Notes/Sketch" section	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea.
Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream infor Channel Water – assessed	Primary Nurs y NCDWR ripa]303(d) List of a federal and/or state i bitat (list species) rmation/supplementary m ment reach metric (skip	ery Area Irian buffer rule in el isted protected spec easurements includ	High Quality Wate ffect INutrient Sensitive CAMA Area of Em cles within the assessment ar	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea.
Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream infor Channel Water – assessed	Primary Nurs y NCDWR ripa 303(d) List of a federal and/or state in bitat (list species) rmation/supplementary mont reach metric (skip ut assessment reach.	ery Area Irian buffer rule in el isted protected spec easurements includ	High Quality Wate ffect INutrient Sensitive CAMA Area of Em cles within the assessment ar led in "Notes/Sketch" section	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea.
Essential Fish Habitat Publicly owned propert Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assess A Water throughou	Primary Nurs y NCDWR ripa]303(d) List of a federal and/or state in bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach.	ery Area Irian buffer rule in el isted protected spec easurements includ	High Quality Wate ffect INutrient Sensitive CAMA Area of Em cles within the assessment ar led in "Notes/Sketch" section	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea.
Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assess A Water throughou B No flow, water in C No water in asse	Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Prim	ery Area inan buffer rule in el isted protected spec easurements includ for Size 1 streams	High Quality Wate ffect INutrient Sensitive CAMA Area of Em cles within the assessment ar led in "Notes/Sketch" section	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea.
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info Channel Water – assessi A Water throughou B No flow, water in C No water in asses Evidence of Flow Restrict A taleast 10% of a 	Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Primary Nurs Prim	ery Area inan buffer rule in el isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-t	High Quality Wate ffect INutrient Sensitive CAMA Area of Em- cies within the assessment ar ed in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info Channel Water – assessi A Water throughou B No flow, water in C No water in asse Evidence of Flow Restrict A At least 10% of a point of obstructi 	Primary Nurs y NCDWR ripa]303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. pools only. essment reach. ction – assessment reac assessment reach in-streac ing flow or a channel chol	ery Area Irian buffer rule in el isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-f ked with aquatic ma	High Quality Wate ffect Nutrient Sensitive CAMA Area of Em- cies within the assessment ar ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely affa accophytes or ponded water of	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned propert Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi MA Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict A At least 10% of a point of obstruction 	Primary Nurs y NCDWR ripa]303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. pools only. essment reach. ction – assessment reac assessment reach in-streac ing flow or a channel chol	ery Area Irian buffer rule in el isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-f ked with aquatic ma	High Quality Wate ffect Nutrient Sensitive CAMA Area of Em- cies within the assessment ar ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely affa accophytes or ponded water of	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info Channel Water – assessi A Water throughou B No flow, water in C No water in asse Evidence of Flow Restrict A At least 10% of a point of obstructi 	Primary Nurs y NCDWR ripa]303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. pools only. essment reach. ction – assessment reac assessment reach in-streac ing flow or a channel chol	ery Area Irian buffer rule in el isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-f ked with aquatic ma	High Quality Wate ffect Nutrient Sensitive CAMA Area of Em- cies within the assessment ar ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely affa accophytes or ponded water of	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrice A At least 10% of a point of obstructi the assessment is beaver dams). KB Not A 	Primary Nurs y Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state in bitat (list species) rmation/supplementary ment ment reach metric (skip ut assessment reach. pools only. essment reach. ction – assessment react assessment reach in-streac ing flow <u>or</u> a channel chol reach (examples: undersi	ery Area Irian buffer rule in el isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-f ked with aquatic ma	High Quality Wate ffect Nutrient Sensitive CAMA Area of Em- cies within the assessment ar ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely affa accophytes or ponded water of	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrice A At least 10% of a point of obstructi the assessment is beaver dams). A Not A 3. Feature Pattern – assess 	Primary Nurs y Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state in bitat (list species) rmation/supplementary mon ment reach metric (skip it assessment reach. pools only. essment reach. ction – assessment react assessment reach in-streac ing flow <u>or</u> a channel chol reach (examples: undersi estment reach metric	ery Area inan buffer rule in el isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-r ked with aquatic ma ized or perched culo	High Quality Wate ffect Nutrient Sensitive CAMA Area of Em- cies within the assessment an ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>o</u> verts, causeways that constrict	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrice A At least 10% of a point of obstructi the assessment is beaver dams). A Not A 3. Feature Pattern – assess 	Primary Nurs y Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state in bitat (list species) rmation/supplementary mon ment reach metric (skip it assessment reach. pools only. essment reach. ction – assessment react assessment reach in-streac ing flow <u>or</u> a channel chol reach (examples: undersi estment reach metric	ery Area inan buffer rule in el isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-r ked with aquatic ma ized or perched culo	High Quality Wate ffect Nutrient Sensitive CAMA Area of Em- cies within the assessment ar ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely affa accophytes or ponded water of	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species; Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restriction C No water in assession of obstruction A At least 10% of a point of obstruction beaver dams). B Not A 3. Feature Pattern – assession A A majority of the B Not A 	Primary Nurs y Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip assessment reach. t assessment reach. ction – assessment reach assessment reach in-streach ing flow <u>or</u> a channel chol reach (examples: undersider assessment reach metric assessment reach has all	ery Area arian buffer rule in ei isted protected spec- easurements includ for Size 1 streams h metric am habitat or riffle-p ked with aquatic ma ized or perched cub	High Quality Wate ffect Nutrient Sensitive CAMA Area of Em- cies within the assessment an ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>o</u> verts, causeways that constrict	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream infor 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict a At least 10% of a point of obstructi the assessment is beaver dams). A Mater Pattern – assessi A A majority of the B Not A 4. Feature Longitudinal Pro 	Primary Nurs Primary Nurs NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. pools only. resement reach. ction – assessment reach assessment reach in-streach assessment reach in-streach ing flow <u>or</u> a channel chol reach (examples: undersi assessment reach has all polle – assessment reach	ery Area inian buffer rule in ei isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-j ked with aquatic ma ized or perched culv hered pattern (example metric	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar ed in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream infor 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict A At least 10% of a point of obstructi the assessment in beaver dams). B Not A 3. Feature Pattern – assessi A A majority of the B Not A 	Primary Nurs Primary Nurs NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. pools only. resement reach. ction – assessment reach assessment reach in-streach ing flow <u>or</u> a channel chol reach (examples: undersi assessment reach has all offile – assessment reach assessment reach has all	erry Area inian buffer rule in ei isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-j ked with aquatic ma ized or perched culv terred pattern (example metric stantially altered str	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar ed in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati ream profile (examples: cha	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No fected by a flow restriction or fill to the moundment on flood or ebb within at the channel, tidal gates, debris jams, on above or below culvert).
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict De assessment is beaver dams). A A majority of the B Not A 4. Feature Longitudinal Pro A Majority of asses Over widening, a these disturbance 	Primary Nurs Primary Nurs NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. pools only. essment reach. ction – assessment reach assessment reach in-streach assessment reach in-streach ing flow or a channel chol reach (examples: undersi estimate treach metric assessment reach has all ofile – assessment reach has a subs ictive aggradation, dredgi	erry Area inian buffer rule in ei isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-j ked with aquatic ma ized or perched culv terred pattern (example metric stantially altered str	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar ed in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati ream profile (examples: cha	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict a At least 10% of a species Evidence of Flow Restrict beaver dams). B Not A 3. Feature Pattern – assessi A A majority of the B Not A 4. Feature Longitudinal Provide the assession of the species 	Primary Nurs Primary Nurs NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. pools only. essment reach. ction – assessment reach assessment reach in-streach assessment reach in-streach ing flow or a channel chol reach (examples: undersi estimate treach metric assessment reach has all ofile – assessment reach has a subs ictive aggradation, dredgi	erry Area inian buffer rule in ei isted protected spec easurements includ for Size 1 streams h metric am habitat or riffle-j ked with aquatic ma ized or perched culv terred pattern (example metric stantially altered str	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar ed in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati ream profile (examples: cha	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No fected by a flow restriction or fill to the moundment on flood or ebb within at the channel, tidal gates, debris jams, on above or below culvert).
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict A At least 10% of a point of obstructi the assessment in beaver dams). B Not A 3. Feature Pattern – assessi A A majority of the B Not A 4. Feature Longitudinal Pro A Majority of asses over widening, a these disturbance B Not A 5. Signs of Active Instability 	Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. a pools only. essment reach. ction – assessment reach assessment reach in-streach ing flow <u>or</u> a channel chol reach (examples: undersi estiment reach metric assessment reach has all offile – assessment reach asment reach has a subs ictive aggradation, dredgi es). y – assessment reach metric	ery Area inian buffer rule in el isted protected spec- easurements includ for Size 1 streams h metric am habitat or riffle-r ked with aquatic ma ized or perched culu tered pattern (example tered pattern (example tered stric stantially altered str ng, and excavation	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar ded in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constrict ples: straightening, modification ream profile (examples: channel where appropriate channel	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No fected by a flow restriction or fill to the or impoundment on flood or ebb within at the channel, tidal gates, debris jams, on above or below culvert).
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asses 2. Evidence of Flow Restrict A At least 10% of a point of obstructi the assessment is beaver dams). B Not A 3. Feature Pattern – assessi A A majority of the B Not A 4. Feature Longitudinal Pro A Majority of asses over widening, a these disturbance B Not A 5. Signs of Active Instability Consider only current in 	Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. a pools only. essment reach. ction – assessment reach assessment reach in-streach ing flow <u>or</u> a channel chol reach (examples: undersi estimate reach metric assessment reach has all offile – assessment reach asment reach has a sub- sictive aggradation, dredgi es). y – assessment reach metric assessment reach has a sub- sictive aggradation, dredgi es).	erry Area arian buffer rule in el isted protected spec- easurements includ for Size 1 streams h metric am habitat or riffle-r ked with aquatic ma ized or perched culu tered pattern (example tered pattern (example tered stric stantially altered str ng, and excavation	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar led in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati ream profile (examples: channel a where appropriate channel stream has currently recover	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. <u>or attached? Yes No</u> fected by a flow restriction <u>or</u> fill to the <u>or</u> impoundment on flood or ebb within at the channel, tidal gates, debris jams, on above or below culvert).
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict A At least 10% of a point of obstructi the assessment is beaver dams). B Not A 3. Feature Pattern – assessi A A majority of the B Not A 4. Feature Longitudinal Prosence disturbance B Not A 5. Signs of Active Instability Consider only current in active bank failure, active construction 	Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. a pools only. essment reach. ction – assessment reach assessment reach in-streach ing flow <u>or</u> a channel chol reach (examples: undersi estimate reach metric assessment reach has all offile – assessment reach assent reach has a sub- scrive aggradation, dredgi es). y – assessment reach metric thannel down-cutting (hea	erry Area arian buffer rule in el isted protected spec- easurements includ for Size 1 streams h metric am habitat or riffle-r ked with aquatic ma ized or perched culu tered pattern (example tered pattern (example tered stric stantially altered str ng, and excavation	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar led in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati ream profile (examples: channel a where appropriate channel stream has currently recover	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. or attached? Yes No fected by a flow restriction or fill to the moundment on flood or ebb within at the channel, tidal gates, debris jams, on above or below culvert).
 ☐Essential Fish Habitat ☐Publicly owned propert; ☐Anadromous fish ☐Documented presence List species; ☐Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi ☑A Water throughou □B No flow, water in □C No water in asses 2. Evidence of Flow Restriction □A At least 10% of a point of obstruction the assessment in beaver dams). ☑B Not A 3. Feature Pattern – assessi ☑A A majority of the □B Not A 4. Feature Longitudinal Properties over widening, a these disturbance □B Not A 5. Signs of Active Instability Consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the consider only current in a curve bank failure, active on a stable of the consider only current in active bank failure, active on a stable of the current in active bank failure, active on a stable of the current in active bank failure, active on a stable of the current in active bank failure, active on a stable of the current in a stable of the current in a curve of the current in a curve of the current in active bank failure, active on a stable of the current in a cur	Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. a pools only. essment reach. ction – assessment reach assessment reach in-streach ing flow <u>or</u> a channel chol reach (examples: undersi estimate reach metric assessment reach has all offile – assessment reach asment reach has a sub- scrive aggradation, dredgi es). y – assessment reach metric channel down-cutting (hea if unstable	erry Area arian buffer rule in el isted protected spec- easurements includ for Size 1 streams h metric am habitat or riffle-r ked with aquatic ma ized or perched culu tered pattern (example tered pattern (example tered stric stantially altered str ng, and excavation	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar led in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati ream profile (examples: channel a where appropriate channel stream has currently recover	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. <u>or attached? Yes No</u> fected by a flow restriction <u>or</u> fill to the <u>or</u> impoundment on flood or ebb within at the channel, tidal gates, debris jams, on above or below culvert).
 Essential Fish Habitat Publicly owned property Anadromous fish Documented presence List species: Designated Critical Hat 19. Are additional stream info 1. Channel Water – assessi A Water throughou B No flow, water in C No water in asse 2. Evidence of Flow Restrict A At least 10% of a point of obstructi the assessment is beaver dams). B Not A 3. Feature Pattern – assessi A A majority of the B Not A 4. Feature Longitudinal Prosence disturbance B Not A 5. Signs of Active Instability Consider only current in active bank failure, active construction 	Primary Nurs y NCDWR ripa [303(d) List of a federal and/or state if bitat (list species) rmation/supplementary m ment reach metric (skip it assessment reach. a pools only. essment reach. ction – assessment reach assessment reach in-streach ing flow or a channel chol reach (examples: undersi estimate treach metric assessment reach has all offile – assessment reach assessment reach has all offile – assessment reach soment reach has a subs ictive aggradation, dredgi es). y – assessment reach m istability, not past event channel down-cutting (hea i unstable nnel unstable	erry Area arian buffer rule in el isted protected spec- easurements includ for Size 1 streams h metric am habitat or riffle-r ked with aquatic ma ized or perched culu tered pattern (example tered pattern (example tered stric stantially altered str ng, and excavation	☐High Quality Wate ffect ☐Nutrient Sensitive ☐CAMA Area of Em- cles within the assessment ar led in "Notes/Sketch" section and Tidal Marsh Streams) pool sequence is severely aff acrophytes <u>or</u> ponded water <u>or</u> verts, causeways that constric ples: straightening, modificati ream profile (examples: channel a where appropriate channel stream has currently recover	rs/Outstanding Resource Waters Waters vironmental Concern (AEC) ea. <u>or attached? Yes No</u> fected by a flow restriction <u>or</u> fill to the <u>or</u> impoundment on flood or ebb within at the channel, tidal gates, debris jams, on above or below culvert).

1

Z

6. Streamside Area Interaction – streamside area metric

0.	Stream				and the R	ight Bank	(R B)			
	LB	RB				igni Dani	. (•
		⊟A ⊟B	Mode	erate evid	ence of co	nditions (e	limited streamsi	is, levees de area	s, down-c access. (raction utting, aggradation, dredging) that adversely affect disruption of flood flows through streamside area, n, minor ditching [including mosquito ditching]) up then (if the to a facedular interview access
/	∑⊋c	Xc	Exter [exar disru impo	nsive evic nples: c ption of undment:	lence of co auseways	nditions th with floo vs through mosquito	nat adversely aff dplain and cha h streamside a ditching <u>}) or</u> fic	nnel col areal or	ence intenstriction, too mu	raction (little to no floodplain/intertidal zone access bulkheads, retaining walls, fill, stream incision, ich floodplain/intertidal zone access [examples: zone unnaturally absent <u>or</u> assessment reach is a
7.	Water	Quality	Stressor	s – asse	ssment re	ach/intert	idal zone metri	С		
		all that Discol Exces Notice Odor Curre Livest	apply. lored wat sive sed eable evid (not inclu nt publish tock with	ter in stre imentatio dence of uding natu hed or co access to ac in stre	am or inter n (burying pollutant di Iral sulfide llected dati o stream or am or inter	tidal zone of stream scharges odors) a indicating intertidal tidal zone	(milky white, blu features or inter entering the ass g degraded wate zone	ue, unnat tidal zon essment er quality	e) reach <u>an</u> in the as	r discoloration, oil sheen, stream foam) <u>d</u> causing a water quality problem sessment reach. Cite source in "Notes" section.
	DH		ided mar	sh veget	ation in the		n "Notes/Sketch	" eection	egulai III)	owing, destruction, etc.)
		Other	: to no stre			(explain ii	I NOLES/SKELCI	Section	,	
8.	Basar	nt Weath ize 1 or 2	er wat e 2 stream	e <mark>rshe</mark> d m s, D1 dro	ought or hi	gher is co		ught; for		r 4 streams, D2 drought or higher is considered a
		Droue	iht condi	tions <u>and</u>	no rainfall	or rainfall	not exceeding 1	inch wit	hin the la	st 48 hours
	□в	Droug	ght condi	tions and	rainfall ex	ceeding 1	inch within the k	ast 48 ho	ours	
	F C		ought co							
9.	∐ Ye	3 ZNO	ls strea	am too la		erous to a	issess? If Yes,	skip to l	Metric 13	(Streamside Area Ground Surface Condition).
10.		al In-stre	am Hab ⊡No	Degrad	ntation mi	im habitat ning, exca	over maiority	m harde	ning [for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
,	405	Charle a		-						ize 4 Coastal Plain streams)
		Check a DA	Multiple	aquatic	nacrophyte	es and aqu	atic mosses		⊔⊦	5% oysters of other natural hard bottoms
	/	·	(includir	na liverwa	orts, lichens	s, and alga	il mats)	Tida Buni		Submerged aquatic vegetation
		⊠8			nd/or leaf p	acks and	or emergent	호통		Low-tide refugia (pools) Sand bottom
			vegetat	ion snads al	nd logs (inc	Judina lao	trees)	Check for Tidal Marsh Streams Only		5% vertical bank along the marsh
	•		5% und	lercut bar	nks and/or	root mats	and/or roots	ΰΞ	Пĸ	Little or no habitat
					to the norm	al wetted	perimeter			
		Ē		no habiti						
										AL MARSH STREAMS************************************
11.	Bedf	orm and	Substra	te – asse	ssment re	ach metri	ic (skip for Size	e 4 Coas	tal Plain	streams and Tidal Marsh Streams)
										coastal Plain streams)
					k the appi					
	110.	Decioim TAA	Riffle-n	un sectior	i (evaluate	11c)	07(03).			
		Øв	Pool-al	ide sectio	n (evaluat	e 11d)	40 4	1 :6~)		
		□c					ric 12, Aquatic			the set whether as not submorrood
	11c.	Charles	t la ant	ARA HAV	in each r	YOW NOT	Present (NP) =	: ansent		te assessment reach – whether or not submerged.) = present but \leq 10%, Common (C) = > 10-40%, hould not exceed 100% for each assessment reach.
		NP,	Ŕ	Ç	Α	R			-	
		ЪЩ Д		<u> </u>	Д	R	Bedrock/sapro Boulder (256 -		m)	
		H	₩,		Н	Ħ	Cobble (64 - 2		,	
		Ы	đ	ম		Ō	Gravel (2 - 64			
·		ADDODOOC		X			Sand (.062 - 2 Silt/clay (< 0.0	2 mm) 62 mm\		
		Н	Å Å		R	H	Detritus	SZ (1811)		
		Н	₩ E	Ы	Ы	ď	Artificial (rip-ra	ip, concre	ete, etc.)	
	444	∐Yes		_	ls filled wit	h sedimen	17			
	110.	1162	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	we hou						

Banner Creek R1

12.	12a. 🔨 Yes	□No	nent reach metric (skip for Tidal Marsh Streams) Was an in-stream aquatic life assessment performed as described in the User Manual? If the following reasons and skip to Metric 13. No Water Other:	
	12b. Tres	[]No /	Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Y apply. If No, skip to Metric 13.	es, check all that
		Adult f Aquati Aquati Beetle	Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 s frogs ic reptiles ic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) as (including water pennies) sfly larvae (Trichoptera [T]) clam (Corbicula)	treams.
	n kaor	Crusta Damse Diptera	acean (isopod/amphipod/crayfish/shrimp) elfly and dragonfly larvae rans (true flies)	
		Megak	y larvae (Ephemeroptera [E]) loptera (alderfly, fishfly, dobsonfly larvae) s/mosquito larvae uito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)	
		Musse	els/Clams (not <i>Corbicula</i>) fish nanders/tadpoles	
			fly larvae (Plecoptera [P]) I larvae (Cranefly) s/loeches	
13.	Streamside A Consider for runoff.	Area Groun the Left E	nd Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley to Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank	flow and upland
	LB RB A A A A A B A B C C	Model Sever	or no alteration to water storage capacity over a majority of the streamside area erate alteration to water storage capacity over a majority of the streamside area re alteration to water storage capacity over a majority of the streamside area (examples: eaction, livestock disturbance, buildings, man-made levees, drainage pipes)	ditches, fill, soil
14.	Streamside A Consider for LB RB	Area Water the Left Ba	r Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B vall ank (LB) and the Right Bank (RB) of the streamside area.	ey types)
		Majori	rity of streamside area with depressions able to pond water ≥ 6 inches deep rity of streamside area with depressions able to pond water 3 to 6 inches deep rity of streamside area with depressions able to pond water < 3 inches deep	
15.	Wetland Pres Consider for wetted perime LB RB	the Left Ba	reamside area metric (skip for Tidal Marsh Streams) ank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or v ssment reach.	within the normal
		Are w	retlands present in the streamside area?	
	Check all con XA Streat B Pond C Obst XD Evide XE Streat	ntributors v ams and/or ds (include v truction that ence of ban	 assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) within the assessment reach or within view of <u>and</u> draining to the assessment reach. r springs (jurisdictional discharges) wet detention basins; do not include sediment basins or dry detention basins) t passes some flow during low-flow periods affecting assessment reach (ex: beaver dam, bottom- nk seepage or sweating (iron oxidizing bacteria in water indicates seepage) bank soil reduced (dig through deposited sediment if present) 	elease dam)
17.	Check all that	t apply.	assessment area metric (skip for Tidal Marsh Streams)	<i>a</i> .
,	☐B Obst ☐C Urba ☑D Evide ☐E Asse	truction not in stream (2 ence that th	bstantial water withdrawals from the assessment reach (includes areas excavated for pump install passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sedimer ≥ 24% impervious surface for watershed) he streamside area has been modified resulting in accelerated drainage into the assessment react ach relocated to valley edge ove	nt deposit)
	Consider aspe A Streat B Degr	ect. Conside am shading aded (exan	reach metric (skip for Tidal Marsh Streams) ier "leaf-on" condition. i is appropriate for the stream category (may include gaps associated with natural processes) mple: scattered trees) i is gone or largely absent	

	Buffer Width – streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out o the first break. /egetated Wooded B RB LB RB A A A A A \geq 100 feet wide <u>or</u> extends to the edge of the watershed B B B B From 50 to < 100 feet wide C C C C C From 30 to < 50 feet wide D D D D From 10 to < 30 feet wide E E A A A A A A A A A A A A A A A A A A
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). _B RB
.	A A Mature forest B B Non-mature woody vegetation or modified vegetation structure C A A Mature forest A A B B Non-mature woody vegetation or modified vegetation structure C A A B B Non-mature woody vegetation with or without a strip of trees < 10 feet wide
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but s within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: Abuts < 30 feet 30-50 feet B RB LB RB LB RB A A A A A Row crops B A A A A A A Row crops B A A A A A A A A A A A A A A A A A A A
22	D D D D D D Pasture (active livestock use) Stem Density – streamside area metric (skip for Tidal Marsh Streams)
~~ .	Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB A A Medium to high stem density B B Low stem density C DC No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
	LB RB DA DA The total length of buffer breaks is < 25 percent. DB DB The total length of buffer breaks is between 25 and 50 percent. C DC The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – First 100 feet of streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB
	A DA Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	C C C C C C C C C C C C C C C C C C C
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. ⊡Yes ဩNo Was conductivity measurement recorded?
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □A < 46 □B 46 to < 67 □C 67 to < 79 □D 79 to < 230 □E ≥ 230
Not	es/Sketch:

x

NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Banner Farm - Banner Creek Reach 1	Date of Evaluation	12/18/2018		
Stream Category Ma3	Assessor Name/Organization	M. Caddell		
Notes of Field Assessment Form (Y/N)		NO		
Presence of regulatory considerations (Y/N)		YES		
Additional stream information/supplementary measurements included (Y/N)				
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)				

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	MEDIUM	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat Overall	NA MEDIUM	

NC SAM FIELD ASSESSMENT FORM Accompanies User Manual Version 2.1

/* n

	USACE AID #	NCDWR #
	INSTRUCTIONS: Attach	a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic
	quadrangle, and circle the k	ocation of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property
	dentity and number all rea	iches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for
	detailed descriptions and e	explanations of requested information. Record in the "Notes" section if supplementary measurements were
	NOTE EVIDENCE OF STOP	M User Manual for examples of additional measurements that may be relevant.
		ESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).
	PROJECT/SITE INFORMA	
	1. Project name (if any):	Banner Farms 2. Date of evaluation: 12/18/298
	3. Applicant/owner name: 5. County:	Wildlamas 4. Assessor name/organization: <u>A cooldell</u>
	7. River basin:	tendersch 6. Nearest named water body
		degrees, at lower end of assessment reach): 35.35168, -92,55635
		degrees, at lower end of assessment reach): <u>20.5568, 92,55635</u>
	9. Site number (show on atta	ached map): β_{anacc} Creck - R) 10. Length of assessment reach evaluated (feet): 1000
	11. Channel depth from bed	(in riffle, if present) to top of bank (feet):
	12. Channel width at top of t	
		ial flow Intermittent flow ITidal Marsh Stream
	STREAM CATEGORY INFO	DRMATION:
	15. NC SAM Zone:	Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O)
	16. Estimated geomorphic	
	valley shape (skip for 1 Tidal Marsh Stream):	
X	· · · · ·	—
1	17. Watershed size: (skip for Tidal Marsh Stream	
	ADDITIONAL INFORMATIO	
		rations evaluated? Wes No If Yes, check all that apply to the assessment area.
	Section 10 water	Classified Trout Waters Waters Water Supply Watershed (
	Essential Fish Habitat	
	Publicly owned proper	
	Anadromous fish	303(d) List CAMA Area of Environmental Concern (AEC)
	Documented presence	e of a federal and/or state listed protected species within the assessment area.
	List species:	s
	Designated Critical Ha	
L	19. Are additional stream into	ormation/supplementary measurements included in "Notes/Sketch" section or attached?
1	I. Channel Water – assess	sment reach metric (skip for Size 1 streams and Tidal Marsh Streams)
		ut assessment reach.
	B No flow, water i	
	C No water in ass	essment reach.
2	2. Evidence of Flow Restri	iction – assessment reach metric
		assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the
	point of obstruct	ting flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within
	the assessment	reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams,
	beaver dams).	
	B Not A	
3		
	A majority of the	assessment reach has altered pattern (examples: straightening, modification above or below culvert).
	B Not A	
4	. Feature Longitudinal Pro	ofile – assessment reach metric
	A Majority of asse	essment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming
	over widening, a	active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of
	these disturbance	xəs).
	B Not A	
5	. Signs of Active Instabili	ty – assessment reach metric
	Consider only current in	nstability, not past events from which the stream has currently recovered. Examples of instability include
	active bank failure, active	channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).
	A < 10% of channe	el unstable
	□B 10 to 25% of cha	
	> 25% of channe	

6. Streamside Area Interaction - streamside area metric

			ne Left B	ank (LB)	and the l	Right Ban	k (RB).				
			Mode refere leaky	erate evid ence inter or interm	ence of c raction (er hittent bulk	onditions (xamples: (heads, cai onditions t	limited streams useways with flo hat adversely a	ns, levee ide area codplain (ffect refer	s, down-c access, constrictio rence inte	cutting, aggradation, dredging) that adversely anect disruption of flood flows through streamside area, on, minor ditching [including mosquito ditching]) araction (little to no floodplain/intertidal zone access	
			disru impo	ption of undments	flood flo , intensiv	we throug	ih streamside o ditching]) <u>or</u> fl	areal of	r too mu	bulkheads, retaining walls, fill, stream incision, ich floodplain/intertidal zone access [examples: zone unnaturally absent <u>or</u> assessment reach is a	
7.				s – asse	ssment re	each/inter	tidal zone met	ric			
		k all that Disco	lored wat	ter in stre	am or inte	rtidal zone	(milky white, b	ue, unna	tural wate	r discoloration, oil sheen, stream foam)	
	□в	Even	has arise	imentatio	n (burving	of stream	features or inte	rtidal zon	ie)	nd causing a water quality problem	
		Oder	/nat inak	idina nati	ral cultida	(anohore)					
		Curre Livesi	nt publisi	hed or col access to	lected dat	ta indicatin or intertidal	g degraded wai zone	er quality	in the as	sessment reach. Cite source in "Notes" section.	
	□G	Evce	eivo alca	ae in strea	am or inte	rtidal zone		humina	recular m	owing, destruction, etc.)	
_		Other	-			(explain i	n "Notes/Sketch	n" section))		
			to no stre								
8.	For S	nt Weath	er – wate 2. stream	ershed m s. D1 dro	etric (ski waht or h	p for Tida Ngher is ca	I Marsh Stream onsidered a dro	ns) Nught; for	Size 3 o	r 4 streams, D2 drought or higher is considered a	
	droug	ht					not exceeding				
		Droug	ght condi	tions and	rainfall ex	ceeding 1	inch within the	last 48 ho	ours		
•	Ac		ought co								
9.	∏Ye	s XNO	is strea	am too lar	ge or dan		assess? If Yes,	, skip to	Metric 13	(Streamside Area Ground Surface Condition).	
10.			arn Hab ⊡No	Deemd	od in etro	am hahita	ach metric t over maiority	of the a	ssessmer	nt reach (examples of stressors include excessive	
	19a.			sedime	ntation. m	inina. exc	avation, in-stream	am harde	ening (for	example, rip-rap], recent dredging, and snagging)	
	4.01	Ohaalia		•						ize 4 Coastal Plain streams)	
	100.		Multiple	aquatic r	nacrophyl	es and aq	uatic mosses	- THE E		5% oysters or other natural hard bottoms Submerged aquatic vegetation	
		<u>М</u> в	(includir Multiple	ng liverwo sticks ar	rts, lichen id/or leaf	s, and alg packs and	al mats) /or emergent	k for Tid h Strean Only	⊟G ⊟H	Low-tide refugia (pools)	
		-	vegetati	ion		cluding lap	,	Check for Tidal Marsh Streams Only		Sand bottom 5% vertical bank along the marsh	
		С Х	5% und	lercut bar	iks and/or	root mats	and/or roots	ซ์ รี	Πĸ	Little or no habitat	
				s extend t no habita		nal wetted	perimeter				
***	*******		*****	REMAIN	IING QUE		ARE NOT APPL	ICABLE	FOR TID	AL MARSH STREAMS*********************************	
										streams and Tidal Marsh Streams)	
		□Yes	× /							Coastal Plain streams)	
	11b. Bedform evaluated. Check the appropriate box(es). XA Riffle-run section (evaluate 11c) XB Pool-glide section (evaluate 11d)										
			Natural	bedform	absent (s	kip to Met	ric 12, Aquatic				
	11c.	In riffle	sections,	check a	I that occ	cur below t	the normal wet	ted perim	eter of th Rare (R	the assessment reach – whether or not submerged.) = present but $\leq 10\%$, Common (C) = > 10-40%, but $\leq 10\%$ for each present merch	
		Abunda	at ieast nt(A) = >	• 40-70%,	Predomin	nant (P) = :	> 70%. Cumula	tive perc	entages s	hould not exceed 100% for each assessment reach.	
		NP M	R	C			Bedrock/sapro	olite			
		ĺ.	Ē	Ē		R	Boulder (256 - Cobble (64 - 1		m)		
			<u>گ</u>	X	Ĕ	ğ	Gravel (2 - 64	4 mm)			
			X		沓		Sand (.062 – Silt/clay (< 0.0				:
		2000000000000000000000000000000000000					Detritus Artificial (rip-ra	ap, concr	ete, etc.)		
	11d	∟ ∐Yes	ja ∭No	Are poo	ls filled wi	th sedimer		•	,		
			<u></u>	· · · • • • •				viii			

4 r'

BUNNARCALOKOZ

					symer gueric c
12.	12a. 🗷	Yes	□ No	sment reach metric (skip for Tidal Marsh Streams) Was an in-stream aquatic life assessment performed as described in the a of the following reasons and skip to Metric 13. No Water Other:	User Manual?
	12b. 🕅	Yes	∐N o	Are aquatic organisms present in the assessment reach (look in riffles, p apply. If No, skip to Metric 13.	ools, then snags)? If Yes, check all that
			>1	Numbers over columns refer to "individuals" for Size 1 and 2 streams and It frogs latic reptiles	'taxa" for Size 3 and 4 streams.
	andanan kananan kanana kanana k		Aqua	latic reputes latic macrophytes and aquatic mosses (include liverworts, lichens, and algal Itles (including water pennies) Idisfly larvae (Trichoptera (T))	mats)
			Asiar	an clam (<i>Corbicula</i>) stacean (isopod/amphipod/cravfish/shrimp)	
			Dipte	nselfly and dragonfly larvae erans (true flies) rfly larvae (Ephemeroptera [E])	
			☐ Mega ☐ Midge	jaloptera (alderfly, fishfly, dobsonfly larvae) ges/mosquito larvae quito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)	
			Muss	s els/Clams (not <i>Corbicula</i>) er fish	
			Snail	amanders/tadpoles ils hefly larvae (Plecoptera [P])	
			Wom	ilid larvae (Cranefly) ms/leeches	· .
13.	Streams Conside runoff.	ide Are r for tl	ea Grou he Left	ound Surface Condition – streamside area metric (skip for Tidal Marsh S t Bank (LB) and the Right Bank (RB). Consider storage capacity with n	itreams and B valley types) agard to both overbank flow and upland
		RB □A XB □C	Mod Seve	le or no alteration to water storage capacity over a majority of the streamside derate alteration to water storage capacity over a majority of the streamside vere alteration to water storage capacity over a majority of the streams npaction, livestock disturbance, buildings, man-made levees, drainage pipes	area side area (examples: ditches, fill, soil
14.	Streams Conside LB	ide Are r for th RB	ea Wate	ter Storage – streamside area metric (skip for Size 1 streams, Tidal Mar Bank (LB) and the Right Bank (RB) of the streamside area.	
			Majo	jority of streamside area with depressions able to pond water ≥ 6 inches dee jority of streamside area with depressions able to pond water 3 to 6 inches d jority of streamside area with depressions able to pond water < 3 inches dee	eep
15.	Conside	r for th	e Left E	streamside area metric (skip for Tidal Marsh Streams) Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of sessment reach.	the streamside area or within the normal
			Are	wetlands present in the streamside area?	
1 6 .	Check a	l contr	ibutors	rs – assessment reach metric (skip for Size 4 streams and Tidal Marsh s within the assessment reach or within view of <u>and</u> draining to the ass /or springs (jurisdictional discharges)	Streams) lessment reach.
		Ponds Obstru Eviden Stream	(include oction the oce of ba	de wet detention basins; do not include sediment basins or dry detention bas hat passes some flow during low-flow periods affecting assessment reach (e pank seepage or sweating (iron oxidizing bacteria in water indicates seepage or bank soil reduced (dig through deposited sediment if present)	x: beaver dam, bottom-release dam)
17.	Check al	l that a	ipply.	– assessment area metric (skip for Tidal Marsh Streams)	
		Obstru Urban	ction no stream	substantial water withdrawals from the assessment reach (includes areas existed passing flow during low-flow periods affecting the assessment reach (ex: $n (\ge 24\%)$ impervious surface for watershed)	watertight dam, sediment deposit)
		Assess	ice that sment re of the at	t the streamside area has been modified resulting in accelerated drainage in reach relocated to valley edge above	to the assessment reach
18.	Shading	– asse	ssment	nt reach metric (skip for Tidal Marsh Streams)	
	Consider	aspect	. Consi	sider "leaf-on" condition.	
	□A □B	Stream	h shadin led (exa	ng is appropriate for the stream category (may include gaps associated with ample: scattered trees)	natural processes)
				ng is gone or largely absent	

ix

19.	Buffer Width – streams	ide area metric (s	skip for Tidal Marsh Streams)
-----	-------------------------------	--------------------	-------------------------------

Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

	to the first break. Vegetated Wooded
	LB RB LB RB XA XA □A □A ≥ 100 feet wide <u>or</u> extends to the edge of the watershed □B □B □B □B From 50 to < 100 feet wide
	$\Box C \Box C \Box C$ From 30 to < 50 feet wide
	D D D From 10 to < 30 feet wide E E XE XE < 10 feet wide <u>or</u> no trees
20.	Buffer Structure – streamside area metric (skip for Tidal Marsh Streams)
	Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). LB RB
	A A Mature forest
	□B □B Non-mature woody vegetation or modified vegetation structure ☑C ☑C Herbaceous vegetation with or without a strip of trees < 10 feet wide
	XC XC Herbaceous vegetation with or without a strip of trees < 10 feet wide □D □D Maintained shrubs □E □E Little or no vegetation
21.	Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams)
	Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet).
	ff none of the following stressors occurs on either bank, check here and skip to Metric 22: 人
	Abuts < 30 feet 30-50 feet LB RB LB RB LB RB
	A A A A Row crops B B B B Maintained turf
	C C C C C C C Pasture (no livestock)/commercial horticulture
~~	D D D D D D D Pasture (active livestock use)
22.	Stem Density – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). LB RB
	A A Medium to high stem density B B Low stem density
	C No wooded riparian buffer or predominantly herbaceous species or bare ground
23.	Continuity of Vegetated Buffer – streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB
	TA The total length of buffer breaks is < 25 percent.
	B B The total length of buffer breaks is between 25 and 50 percent. C C The total length of buffer breaks is > 50 percent.
24.	Vegetative Composition – First 100 feet of streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat.
	LB RB A A Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	B B Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	C C C C C C C C C C C C C C C C C C C
25.	Conductivity – assessment reach metric (skip for all Coastal Plain streams) 25a. Yes No Was conductivity measurement recorded?
	25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\Box A < 46$ $\Box B = 46$ to < 67 $\Box C = 67$ to < 79 $\Box D = 79$ to < 230 $\Box E \ge 230$

Notes/Sketch:

NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Banner Farms - Banner Creek Reach 2	Date of Evaluation	12/18/2018
Stream Category <u>Ma3</u>	Assessor Name/Organization	M. Caddell
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		YES
Additional stream information/supplementary measurements included (Y/N	NO	
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	MEDIUM	
(3) Upland Pollutant Filtration	HIGH	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

Б.

	NC SAM FIELD ASSESSMENT FORM RAMAR R3 BR49
	NC SAM FIELD ASSESSMENT FORM Sam NEA IC 5 8-12 70 Accompanies User Manual Version 2.1
USACE A	ID #: NCDWR #
INSTRUC quadrangle identify an detailed de performed.	TIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic e, and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, d number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for escriptions and explanations of requested information. Record in the "Notes" section if supplementary measurements were . See the NC SAM User Manual for examples of additional measurements that may be relevant. DENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).
	/SITE INFORMATION:
	name (if any): <u>Banner Farms</u> 2. Date of evaluation: 1211 B12018
1	towner name: Wildlamds 4. Assessor name/organization: M. Caddell
5. County: 7. River ba	sin: <u>French Braced</u> 6. Nearest named water body on USGS 7.5-minute guad: <u>French Broad River</u>
	rdinates (decimal degrees, at lower end of assessment reach): <u>35,35194,-91,55373</u>
STREAM	NFORMATION: (depth and width can be approximations)
	nber (show on attached map): but nor Cricch, pt-3 10. Length of assessment reach evaluated (feet): 400
	el depth from bed (in riffle, if present) to top of bank (feet):
	e type: Perennial flow Intermittent flow ITidal Marsh Stream
STREAM	CATEGORY INFORMATION:
15. NC SA	M Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O)
	ted geomorphic shape (skip for
	shape (skip for the sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)
	hed size: (skip \Box Size 1 (< 0.1 mi ²) \Box Size 2 (0.1 to < 0.5 mi ²) \Box Size 3 (0.5 to < 5 mi ²) \Box Size 4 (≥ 5 mi ²) dal Marsh Stream)
	AL INFORMATION:
	egulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area.
□Esse □Publ □Anac	ion 10 water Classified Trout Waters Water Supply Watershed (□I □II □II □II □II □V) ential Fish Habitat Primary Nursery Area High Quality Waters/Outstanding Resource Waters icty owned property NCDWR riparian buffer rule in effect Nutrient Sensitive Waters dromous fish 303(d) List CAMA Area of Environmental Concern (AEC)
	imented presence of a federal and/or state listed protected species within the assessment area.
	species: gnated Critical Habitat (list species)
	titional stream information/supplementary measurements included in "Notes/Sketch" section or attached?
1. Channe	
	el Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) Water throughout assessment reach. No flow, water in pools only. No water in assessment reach.
	ce of Flow Restriction – assessment reach metric
Ž(A	At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams, beaver dams).
□в	Not A
3. Feature	Pattern – assessment reach metric A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). Not A
4. Feature	Longitudinal Profile – assessment reach metric Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances). Not A
Conside	f Active Instability – assessment reach metric er only current instability, not past events from which the stream has currently recovered. Examples of instability include ank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap). < 10% of channel unstable 10 to 25% of channel unstable > 25% of channel unstable

6. Streamside Area Interaction – streamside area metric

Consider for the Left Bank (LB) and the Right Bank (RB).

Little or no evidence of conditions that adversely affect reference interaction

Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])

Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching]) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors – assessment reach/intertidal zone metric

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)
- B Excessive sedimentation (burying of stream features or intertidal zone)
 - Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- C
 Noticeable evidence of pollutant discharges

 D
 Odor (not including natural sulfide odors)
- Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes" section.
- F Livestock with access to stream or intertidal zone
- G Excessive algae in stream or intertidal zone
- Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc.)
- Other: _____ (explain in "Notes/Sketch" section)
- Little to no stressors

8. Recent Weather - watershed metric (skip for Tidal Marsh Streams)

For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.

- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- B Drought conditions and rainfall exceeding 1 inch within the last 48 hours
- No drought conditions
- 9. Large or Dangerous Stream assessment reach metric

Yes XNo Is stream too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types - assessment reach metric

10a.
Yes No Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

10b Check all that occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

UD.		Multiple (includin	aquatic r g liverwo	nacrophy rts, licher	tes and aquins, and alga	uatic mosses al mats) /or emergent			5% oysters or other natural ha Submerged aquatic vegetatior Low-tide refugia (pools)	
i.	_ ₽	vegetatie Multiple 5% unde	on snags ar ercut bar	nd logs (ir iks and/o	cluding lap	trees) and/or roots	Check for Tidal Marsh Streams Only		Sand bottom 5% vertical bank along the ma Little or no habitat	ırsh
*****	E	Little or	no habita	it			.ICABLE	FOR TID	AL MARSH STREAMS*******	*****
Bedf	orm and	Substrat	e – asse	ssment r	each metr	ic (skip for Siz	e 4 Coas	tal Plain	streams and Tidal Marsh Stre	ams)
11a.	Yes	XINO	Is asses	sment rea	ich in a nat	ural sand-bed s	tream? (skip for C	coastal Plain streams)	
		Riffle-ru Pool-glic Natural	n section de section bedform	(evaluat n (evalua absent (s	te 11d) kip to Me t	ric 12, Aquatic			•	· ·
11c.	Check a	it least d	one box	in each	row. Not	Present (NP) :	= absent.	Rare (R	e assessment reach – whethe) ≈ present but ≤ 10%, Comm hould not exceed 100% for each	on (C) = > $10-40\%$,
	aooooxxx		م موالا			Bedrock/sapro Boulder (256 Cobble. (64 – 2 Gravel (2 – 64 Sand (.062 – 2 Silt/clay (< 0.0 Detritus Artificial (rip-ra	- 4096 m 256 mm) 1 mm) 2 mm) 2 mm))62 mm)			
		X	A		مرج معينا أمرج حرجانة	5				

11d. Types XNo Are pools filled with sediment?

Banner Creek R 2 R 11.4a

12.	12a. 🔀	Yes	□ No	ment reach metric (skip for Tidal Marsh Streams) Was an in-stream aquatic life assessment performed as described in th	IWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	/if 12b. 🗆			of the following reasons and skip to Metric 13. No Water Other: Are aquatic organisms present in the assessment reach (look in riffles,	pools, then snags)? If Yes, check all that
	· 1		>1 ∏Adult		"taxa" for Size 3 and 4 streams.
			□Aqua □Beetl	atic reptiles atic macrophytes and aquatic mosses (include liverworts, lichens, and alga les (including water pennies)	l mats)
	, jak		Asian	disfly larvae (Trichoptera [T]) n clam (<i>Corbicula</i>) tacean (isopod/amphipod/crayfish/shrimp)	
			Dipte	selfiy and dragonfiy larvae erans (true files) fly larvae (Ephemeroptera [E]) aloptera (alderfiy, fishfiy, dobsonfiy larvae)	• •
				es/mosquito larvae quito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>) sels/Clams (not <i>Corbicula</i>)	
			Other	r fish manders/tadpoles	
			Tipuli	efly larvae (Plecoptera [P]) id larvae (Cranefly) ns/leeches	
13.	Streams Conside runoff.	ide Ar er for t	ea Grou he Left	und Surface Condition – streamside area metric (skip for Tidal Marsh Bank (LB) and the Right Bank (RB). Consider storage capacity with	Streams and B valley types) regard to both overbank flow and upland
			Mode Seve	e or no alteration to water storage capacity over a majority of the streamsic lerate alteration to water storage capacity over a majority of the streamsid ere alteration to water storage capacity over a majority of the stream paction, livestock disturbance, buildings, man-made levees, drainage pipe	e area Iside area (examples: ditches, fill, soil
14.	Streams Conside LB	i de Ar e r for th RB	ea Wate	er Storage – streamside area metric (skip for Size 1 streams, Tidal Ma Bank (LB) and the Right Bank (RB) of the streamside area.	
			Majo	ority of streamside area with depressions able to pond water ≥ 6 inches de ority of streamside area with depressions able to pond water 3 to 6 inches ority of streamside area with depressions able to pond water < 3 inches de	deep
15.	Conside wetted p	r for th erimete	1e Left E	treamside area metric (skip for Tidal Marsh Streams) Bank (LB) and the Right Bank (RB). Do not consider wetlands outside o essment reach.	f the streamside area or within the normal
		RB ∭YÝ □N	Are v	wetlands present in the streamside area?	
	Baseflov Check a Check a Chech	Il contr Strean Ponds Obstru Evider Strean	ributors ns and/o (include uction that nce of ba	s – assessment reach metric (skip for Size 4 streams and Tidal Marsh within the assessment reach or within view of <u>and</u> draining to the as or springs (jurisdictional discharges) e wet detention basins; do not include sediment basins or dry detention ba at passes some flow during low-flow periods affecting assessment reach (ank seepage or sweating (iron oxidizing bacteria in water indicates seepage r bank soil reduced (dig through deposited sediment if present) bove	sessment reach. sins) ex: beaver dam, bottom-release dam)
17.	Baseflow Check al DA DB C DC DE DE F	II that a Evider Obstru Urban Evider Asses	apply. nce of su iction no stream (nce that f	- assessment area metric (skip for Tidal Marsh Streams) ubstantial water withdrawals from the assessment reach (includes areas e of passing flow during low-flow periods affecting the assessment reach (ex (≥ 24% impervious surface for watershed) the streamside area has been modified resulting in accelerated drainage i each relocated to valley edge	: watertight dam, sediment deposit)
18.		aspect Stream Degrad	t. Consi n shadin ded (exa	t reach metric (skip for Tidal Marsh Streams) ider "leaf-on" condition. Ig is appropriate for the stream category (may include gaps associated will ample: scattered trees) Ig is gone or largely absent	h natural processes)

нà. .

19.	Buffer Width -	streamside	area metric ((skip for	[•] Tidal Marsh Streams)
-----	----------------	------------	---------------	-----------	-----------------------------------

Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out

بر		RB □A ≥ 100 feet wide or extends to the edge of the watershed □B From 50 to < 100 feet wide □C From 30 to < 50 feet wide □D From 10 to < 30 feet wide ☑E < 10 feet wide or no trees
	Consider for left LB RB DA DA B B C C D D E D E	- streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all approp is within 30 feet of If none of the foll Abuts < 30 LB RB LB A KA A A B B B	A ⊠A ⊡A ⊠A Row crops B □B □B ■B Maintained turf C □C □C ■C Pasture (no livestock)/commercial horticulture
22.	Stem Density - s	treamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).
		Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Continuity of Veg Consider whether LBRB,	getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.
		The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.	Vegetative Comp Evaluate the dom assessment reach LB RB	position – First 100 feet of streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to in habitat.
		Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.
	⊔в⊔в)xic yxic	Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing <u>or</u> communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
25.	Conductivity – a 25a. □Yes 文	ssessment reach metric (skip for all Coastal Plain streams) No Was conductivity measurement recorded?

25b.	Check the box of	corresponding to the c	onductivity measuremen	it (units of microslemen	s per centimeter).
	∐A < 46	□B 46 to < 67	□C 67 to < 79	□D 79 to < 230	⊟E ≥230
	1				

Notes/Sketch:

NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Banner Farms - Banner Creek Reach 3 & 4a	Date of Evaluation	12/18/2018
Stream Category Ma3	Assessor Name/Organization	M. Caddell
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		YES
Additional stream information/supplementary measurements included (Y/	N)	NO
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitter
(1) Hydrology	LOW	
(2) Baseflow	MEDIUM	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(2) Tidal Marsh Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
	LOW	
(1) Water Quality	MEDIUM	
(2) Baseflow		
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	MEDIUM	
(3) Substrate	LOW	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW NA	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction (3) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Stream Stability (4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

NC SAM FIELD ASSESSMENT FORM

Banner GeekR4B

۲.,

	Accompanies User Manual Version 2.1
USACE A	
INSTRUC	TIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic
quadrangk	e, and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property
identify an	d number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for
detailed d	escriptions and explanations of requested information. Record in the "Notes" section if supplementary measurements were
performed	See the NC SAM User Manual for examples of additional measurements that may be relevant.
NOTE EVI	DENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).
	/SITE INFORMATION:
	name (if any): <u> CannerFarms</u> 2. Date of evaluation: <u> Z11812018</u>
5. County:	Nowner name: <u>Wildland5</u> 4. Assessor name/organization: <u>M. Caddlele</u>
7. River ba	Henderson 6. Nearest named water body
	sin: <u>FNEMCMB10ad</u> on USGS 7.5-minute quad: FremomBroad UVAY rdinates (decimal degrees, at lower end of assessment reach): <u>25,35091,-82,55187</u>
	NFORMATION: (depth and width can be approximations)
9. Site nun	iber (show on attached map): Benner Reach YB 10, Length of assessment reach evaluated (feet):
	el depth from bed (in riffle, if present) to top of bank (feet): 15
	al width at top of bank (feet): $dv - Y \phi$ 13. Is assessment reach a swamp stream? \Box Yes $[X]$ No
14. Feature	e type: Verennial flow Intermittent flow Tidal Marsh Stream
STREAM	CATEGORY INFORMATION:
15. NC SA	M Zone: XMOuntains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O)
16 Cotimo	
	ted geomorphic hape (skip for Dia
	larsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)
17. Waters	
	hed size: (skip L Size 1 (< 0.1 mi²) []Size 2 (0.1 to < 0.5 mi²) [2]Size 3 (0.5 to < 5 mi²) []Size 4 (≥ 5 mi²) Ial Marsh Stream)
	AL INFORMATION:
18. Were n	agulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area.
Sect	ion 10 water Classified Trout Waters Water Supply Watershed (
Esse	Initial Fish Habitat
Publ	cly owned property INCDWR riparian buffer rule in effect INutrient Sensitive Waters
	Iromous fish
Docu	mented presence of a federal and/or state listed protected species within the assessment area.
List	species:
	gnated Critical Habitat (list species)
19. Are add	itional stream information/supplementary measurements included in "Notes/Sketch" section or attached?
1. Channe	A Water accomment much in fair for the distance of the table of the
	el Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams) Water throughout assessment reach.
Π̈́β	No flow, water in pools only.
	No water in assessment reach.
2. Eviden	ce of Flow Restriction – assessment reach metric
	At least 10% of assessment reach in stroom behint or sittle neel ensure of is source offerted by the state is a stroom behint or sittle neel ensure of is source to affect to the form that is a stroom behint or sittle need assure to a strong behint of the strong
9r	At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within
	the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams
	beaver dams).
⊡в	Not A
3. Feature	Pattern – assessment reach metric
MA	A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert).
⊡ ⊌	Not A
4. Feature	Longitudinal Profile – assessment reach metric
ØA	Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any or
	these disturbances).
□в	Not A
	f Active Instability – assessment reach metric
active h	er only current instability, not past events from which the stream has currently recovered. Examples of instability include ank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).
	< 10% of channel unstable
⊟́₿	10 to 25% of channel unstable
<u>X</u>	> 25% of channel unstable
~ ~	

6. Streamside Area Interaction – streamside area metric

0.	Consid	ler for th	e Left B	ank (LB)	and the F	Right Ban	k (RB).			
	LB A B	RB □A □B	Little Mode refere	or no evid erate evide ence inter	lence of c ence of c action (e)	onditions (onditions (kamples:	that adversely a examples: bern limited streams	ns, levee ide area podplain (s, down-0 access, constrictio	disruption of flood flows through streamside area, on, minor ditching [including mosquito ditching])
	Хçс	Xc	Exter (exar disru impo	nsive evid nples: c ption of undments	ence of ca auseways flood flow , intensive	onditions t with floo	hat adversely a odplain and cha nh streamside o ditching]) <u>or</u> fl	ffect refei annel co areal or	ence intenstriction, too mu	eraction (little to no floodplain/intertidal zone access , bulkheads, retaining walls, fill, stream incision, uch floodplain/intertidal zone access [examples: zone unnaturally absent <u>or</u> assessment reach is a
7.	Water	Quality S	Stressor	s – asse	ssment re	each/inter	tidal zone metr	ic		
	Check	all that	anniv						hural wate	er discoloration, oil sheen, stream foam)
	□A □B	Evene	eivo eod	imentatio	n (hurvina	of stream	features or inte	rtidal zon	e)	·
	□c	Notice	able evi	dence of p	pollutant d	lischarges	entering the as	sessmen	reach <u>ar</u>	nd causing a water quality problem
		Currei	nt publis	hed or col	ral sulfide lected dat	a indicatin r intertidal	g degraded wat	ter quality	in the as	ssessment reach. Cite source in "Notes" section.
	⊡G	Evroe	sivo alas	ao in strea	im or inter	rtidal zone				and a destruction of a)
	EH -	Degra	ided mar	sh vegeta	tion in the	e intertidal (explain i	zone (removal, in "Notes/Sketch	burning, " section	regular m)	nowing, destruction, etc.)
		Little	to no stre	essors		.				
8.	Bacan	t Weath ze 1 or 2	er – wate 2. stream	e <mark>rshed m</mark> s. D1 dra	etric (ski uaht or h	p for Tida igher is co	I Marsh Stream onsidered a dro	is) lught; for	Size 3 o	or 4 streams, D2 drought or higher is considered a
	drough	nt					not exceeding			
	□A □B	Droug	int condi iht condi	tions <u>and</u>	rainfall ex	ceeding 1	inch within the	last 48 ho	ours	
	X	No dr	ought co	nditions						· · · · ·
9.	Large	or Dang	erous S Is strea	tream — a am too lan	issessme ge or dang	ent reach i gerous to a	metric assess? If Yes,	, skip to	Metric 13	8 (Streamside Area Ground Surface Condition).
10.				itat Type	s – asses	sment rea	ach metric			nt mach (avamples of stressors include excessive
	10	⊡Yes	□No	sedimer	ntation. m	inina, exc	t over majority avation, in-strea al Plain stream	am harde	ning (for	nt reach (examples of stressors include excessive example, rip-rap], recent dredging, and snagging) to Metric 12)
	10b. (Check al	li that oc	cur (occi	urs if > 5%	coverage	of assessment	reach) (s	kip for S	size 4 Coastal Plain streams) 5% oysters or other natural hard bottoms
		₽ ^	Multiple	aquatic n	nacrophyt	es and aq s, and alga	uatic mosses		□F □G	Submerged aquatic vegetation
		⊡в	Multiple	sticks an	d/or leaf	packs and	/or emergent	for T Street		Low-tide refugia (pools)
			vegetati Multiple		d loas (in	cluding lap	trees)	Check for Tidal Marsh Streams Only	٦ı	5% vertical bank along the marsh
		₩°	5% und	ercut ban	ks and/or	root mats	and/or roots	ΰŝ	Шĸ	Little or no habitat
		DE		no habita		nal wetteo	perimeter			
***						STIONS A	ARE NOT APPL	ICABLE	FOR TID	AL MARSH STREAMS************************************
										streams and Tidal Marsh Streams)
•••			XNo							Coastal Plain streams)
			v -	2		ropriate b				
			Riffle-ru	in section	(evaluate	e 11c)	,			
		Σαβ □C	Pool-gli Natural	bedform	n (evaluat absent (sl	te 110) kip to Met	ric 12, Aquatic	Life)		
	440	in riffic a	octione	check al	I that occ	ur helow i	the normal wett	ed perim	eter of th	the assessment reach – whether or not submerged.
		Chaste a	4 looof	ana hay	in each	row Not	Present (NP) 3	= adsent	Rare (R	t) = present but \leq 10%, Common (C) = > 10-40%, should not exceed 100% for each assessment reach.
		NP	<u>R</u>	С	A	<u>P</u>			Ū	
		X		R	R		Bedrock/sapro Boulder (256 -		m)	
		đ	Ì.	ğ	ğ	ğ	Cobble (64 - 2			
		H	Ä	H			Gravel (2 - 64 Sand (.062 - 2			
			RIRCORRE		R		Silt/clay (< 0.0 Detritus)62 mm)		
		Ľ	X	Ы	Ы	Ы	Artificial (rip-ra	ap, concr	ete, etc.)	· u
	11d.	□Yes	MNO	Are pool	s filled wi	th sedimer	nt?			
			1					viii		

ئىزا

,	Ren	ch4	-B	Banner Farm R.4B
12.	12a. 🗌]Yes	D No	ment reach metric (skip for Tidal Marsh Streams) Was an in-stream aquatic life assessment performed as described in the User Manual? of the following reasons and skip to Metric 13. □No Water □Other: <u></u>
	12b. 🗌]Yes	□No	Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
ĩ		_	Aqua	Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams, t frogs tic reptiles itic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) les (including water pennies)
]]]]	Cade Asia Crus	tisffy larvae (Trichoptera [T]) n clam (<i>Corbicula</i>) tacean (isopod/amphipod/crayfish/shrimp) selfly and dragonfly larvae mans (true flies)
			Mayl	iy larvae (Ephemeroptera [E]) aloptera (alderfly, fishfly, dobsonfly larvae) es/mosquito larvae juito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>)
]]]	☐Othe ☐Sala ☐Snai	nanders/tadpoies
]		id larvae (Cranefly) ns/leeches
13.	Streams Conside runoff.	side Ar er for t	ea Grou he Left	and Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland
		RB □A MB □C	Moc Sev	e or no alteration to water storage capacity over a majority of the streamside area lerate alteration to water storage capacity over a majority of the streamside area are alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil paction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.	Streams Conside LB	side Ar er for th RB	ea Wate	or Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Bank (LB) and the Right Bank (RB) of the streamside area.
			Majo	prity of streamside area with depressions able to pond water ≥ 6 inches deep prity of streamside area with depressions able to pond water 3 to 6 inches deep prity of streamside area with depressions able to pond water < 3 inches deep
15.	Conside wetted p	er for the	ie Left i	treamside area metric (skip for Tidal Marsh Streams) Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal essment reach.
	LB XTY DN	RB ∭AY □N	Are	wetlands present in the streamside area?
16.	Baseflow Check a MA MB C MB C MB MC C MB MC F	II contr Strean Ponds Obstru Evider Strean	ributors ns and/o (includ iction th ice of b	 assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) within the assessment reach or within view of <u>and</u> draining to the assessment reach. or springs (jurisdictional discharges) a wet detention basins; do not include sediment basins or dry detention basins) at passes some flow during low-flow periods affecting assessment reach (ex: beaver dam, bottom-release dam) ank seepage or sweating (iron oxidizing bacteria in water indicates seepage) bank soil reduced (dig through deposited sediment if present)
17.	Baseflow Check a A B C C C C C C C C C C C C C C C C C C	II that a Eviden Obstru Urban Eviden Asses	apply. Ice of si Iction no stream Ice that	assessment area metric (skip for Tidal Marsh Streams) Ibstantial water withdrawals from the assessment reach (includes areas excavated for pump installation) It passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) (≥ 24% impervious surface for watershed) the streamside area has been modified resulting in accelerated drainage into the assessment reach each relocated to valley edge
18. ⁻		aspect Stream Degrad	t. Consi n shadin ded (exa	reach metric (skip for Tidal Marsh Streams) der "leaf-on" condition. g is appropriate for the stream category (may include gaps associated with natural processes) imple: scattered trees) g is gone or largely absent
				ix

r E(

	Consider "vegeta to the first break. Vegetated Woo LB RB LB MA MA A B B B B C C C D D D D D E E E	RB □A ≥ 100 feet wide or extends to the edge of the watershed □B From 50 to < 100 feet wide □C From 30 to < 50 feet wide □D From 10 to < 30 feet wide ☑E < 10 feet wide or no trees
20.	Buffer Structure - Consider for left LB RB A A B B B B Vac Vac D D D D E E	- streamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). Mature forest Non-mature woody vegetation <u>or</u> modified vegetation structure Herbaceous vegetation with or without a strip of trees < 10 feet wide Maintained shrubs Little or no vegetation
21.	Check all approp is within 30 feet of If none of the foll Abuts < 30 LB RB LB	C C C Pasture (no livestock)/commercial horticulture
22.	Stem Density – s Consider for left LB RB A A A XB C C C	treamside area metric (skip for Tidal Marsh Streams) bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). Medium to high stem density Low stem density No wooded riparian buffer <u>or</u> predominantly herbaceous species <u>or</u> bare ground
23.	Continuity of Veg Consider whether LB RB DA DA DB DB C C C	getated Buffer – streamside area metric (skip for Tidal Marsh Streams) vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent. The total length of buffer breaks is > 50 percent.
24.	Vegetative Comp Evaluate the dom assessment reach LB RB A A B B B B	 Dosition – First 100 feet of streamside area metric (skip for Tidal Marsh Streams) inant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to n habitat. Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or
25.	25a. □Yes 🕱	ssessment reach metric (skip for all Coastal Plain streams) [No Was conductivity measurement recorded?
	A < 46	box corresponding to the conductivity measurement (units of microsiemens per centimeter). $\square B$ 46 to < 67 $\square C$ 67 to < 79 $\square D$ 79 to < 230 $\square E \ge 230$
No	tes/Sketch:	

NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Banner Farms - Banner Creek Reach 4b	Date of Evaluation	12/18/2018
Stream Category Ma3	Assessor Name/Organization	M. Caddell
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		YES
Additional stream information/supplementary measurements included (Y/N)	1	NO
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	HIGH	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

UTI Upper

NC SAM FIELD ASSESSMENT FORM

			mpanies User Ma			
	USACE AID #:	· · · · · · · · · · · · · · · · · · ·	·	NCDWR #		
10	INSTRUCTIONS: Attach a	sketch of the assessme	ent area and pho	otographs. Attack	a copy of t	he USGS 7.5-minute topographic
17	quadrangle, and circle the loc	ation of the stream reach	under evaluation.	If multiple stream	reaches will I	e evaluated on the same property
K	identify and number all reach	es on the attached map	, and include a s	eparate form for e	each reach. S	See the NC SAM User Manual for
a	detailed descriptions and exp	lanations of requested i	nformation. Rec	ord in the "Notes	" section if si	upplementary measurements were
P	performed. See the NC SAM	User Manual for examples	s of additional me	asurements that m	ay be relevant	
	NOTE EVIDENCE OF STRES		ASSESSMENT	AREA (do not n ee	d to be within	the assessment area).
	PROJECT/SITE INFORMATION					
	1. Project name (if any):	Banner Fa		. Date of evaluatio		18/2018
	3. Applicant/owner name:	wildlands		. Assessor name/c	-	Micadell
	5. County:	Henderson		. Nearest named w		
	7. River basin:	French Bro	<u>a01</u>	on USGS 7.5-mi		French Blood line
	3. Site coordinates (decimal de			35,353	<u>346,-9</u>	2.55433
3	STREAM INFORMATION: (de 9. Site number (show on attack					ited (feet): 200
	1. Channel depth from bed (in			ngth of assessmen		
	12. Channel width at top of bar			3-4'		able to assess channel depth.
	4. Feature type: Perennial			sessment reach a	swamp stream	
				tream		
	15. NC SAM Zone:	<u> </u>	Piedmont (P)	Inner Coast	of Disin (I)	
				Linner Coast		Outer Coastal Plain (O)
1	6. Estimated geomorphic	_ <u>(</u>	·			
	valley shape (skip for					_
	Tidal Marsh Stream):	(more sinuous stream,		•	ss sinuous stro	eam, steeper valley slope)
7 1	7. Watershed size: (skip	☐Size 1 (< 0.1 mi²)	Size 2 (0.1 to	< 0.5 mi ²) 🛛 🗌 Si	ze 3 (0.5 to < 9	5 mi²)
	for Tidal Marsh Stream)					
	ADDITIONAL INFORMATION					
	8. Were regulatory considerat	Classified Tro	_INO IT Yes, chec			
	Essential Fish Habitat				Supply waters	
	Publicly owned property		ian buffer rule in e	ffect Diutrior	it Sensitive Waters/	Outstanding Resource Waters
		□ 303(d) List				nmental Concem (AEC)
	Documented presence o		ted protected spe	cies within the ass	Alea OI EINIC	ALCONCERN (AEC)
	List species;				oooment aroa.	
	Designated Critical Habi	at (list species)		·····	·	····
19	9. Are additional stream inform	nation/supplementary me	asurements includ	led in "Notes/Sket	ch" section or	attached? TYes No
		interite appletiteritary the		and the second sec		
	<u>ي</u> ن.					
1.	Channel Water - assessm	ent reach metric (skip f	or Size 1 stream:	s and Tidal Marsh	Streams)	
1.	Channel Water – assessm	ent reach metric (skip fe assessment reach.	or Size 1 streams	s and Tidal Marsh	Streams)	
1.	Channel Water – assessm A Water throughout B No flow, water in p	ent reach metric (skip fe assessment reach. pools only.	or Size 1 stream:	s and Tidal Marsh	streams)	
1.	Channel Water – assessm A Water throughout B No flow, water in p C No water in asses	ent reach metric (skip fo assessment reach. ools only. sment reach.		s and Tidal Marsh	Streams)	
1. 2.	Channel Water – assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict	ent reach metric (skip f assessment reach. ools only. sment reach. ion – assessment reach	metric			
	Channel Water – assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as	ent reach metric (skip fo assessment reach. ools only. sment reach. ion – assessment reach ssessment reach in-strear	metric n habitat or riffle-	pool sequence is	severely affec	ted by a flow restriction <u>or</u> fill to the
	Channel Water – assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as point of obstructin	ent reach metric (skip f assessment reach. ools only. sment reach. ion – assessment reach ssessment reach in-streau g flow <u>or</u> a channel choke	metric m habitat or riffle- ed with aquatic m	pool sequence is	severely affec	mooundment on flood or ebb within
	Channel Water – assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re	ent reach metric (skip f assessment reach. ools only. sment reach. ion – assessment reach ssessment reach in-streau g flow <u>or</u> a channel choke	metric m habitat or riffle- ed with aquatic m	pool sequence is	severely affec	ted by a flow restriction <u>or</u> fill to the mpoundment on flood or ebb within he channel, tidal gates, debris jams,
	Channel Water – assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as point of obstructin	ent reach metric (skip f assessment reach. ools only. sment reach. ion – assessment reach ssessment reach in-streau g flow <u>or</u> a channel choke	metric m habitat or riffle- ed with aquatic m	pool sequence is	severely affec	mooundment on flood or ebb within
2.	Channel Water – assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as point of obstruction the assessment re beaver dams). B Not A	ent reach metric (skip fe assessment reach. bools only. sment reach. ion – assessment reach ssessment reach in-streau g flow <u>or</u> a channel choke each (examples: undersiz	metric m habitat or riffle- ed with aquatic m	pool sequence is	severely affec	mooundment on flood or ebb within
	Channel Water - assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as point of obstruction the assessment re beaver dams). B Not A Feature Pattern - assessment	ent reach metric (skip f assessment reach ools only, sment reach. ion – assessment reach sessment reach in-stread g flow <u>or</u> a channel choke each (examples: undersiz	metric m habitat or riffle- ad with aquatic m ed or perched cul	pool sequence is acrophytes <u>or</u> pon verts, causeways t	severely affec ded water <u>or</u> i that constrict ti	mpoundment on flood or ebb within he channel, tidal gates, debris jams,
2.	Channel Water - assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as point of obstruction the assessment re beaver dams). B Not A Feature Pattern - assessment	ent reach metric (skip fe assessment reach. bools only. sment reach. ion – assessment reach ssessment reach in-streau g flow <u>or</u> a channel choke each (examples: undersiz	metric m habitat or riffle- ad with aquatic m ed or perched cul	pool sequence is acrophytes <u>or</u> pon verts, causeways t	severely affec ded water <u>or</u> i that constrict ti	mpoundment on flood or ebb within he channel, tidal gates, debris jams,
2.	Channel Water - assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of at point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm A A majority of the a B Not A	ent reach metric (skip fo assessment reach. xools only. sment reach. ion – assessment reach ssessment reach in-stread g flow <u>or</u> a channel choke ach (examples: undersiz ment reach metric ssessment reach has alte	metric m habitat or riffle- ad with aquatic m ed or perched cul red pattem (exarr	pool sequence is acrophytes <u>or</u> pon verts, causeways t	severely affec ded water <u>or</u> i that constrict ti	mpoundment on flood or ebb within he channel, tidal gates, debris jams,
2.	Channel Water - assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of at point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm A A majority of the a B Not A Feature Longitudinal Profi	ent reach metric (skip fo assessment reach. pools only. sment reach. ion – assessment reach ssessment reach in-stread g flow <u>or</u> a channel choke ach (examples: undersiz ment reach metric ssessment reach has alte	metric m habitat or riffle- ad with aquatic m ed or perched cul red pattem (exarr netric	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening	severely affec ded water <u>or</u> i that constrict t , modification	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert).
2.	Channel Water - assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of at point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm A A majority of the a B Not A Feature Longitudinal Profit	ent reach metric (skip fo assessment reach. pools only. sment reach. ion – assessment reach ssessment reach in-stread g flow <u>or</u> a channel choke ach (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach reach r sment reach has a subst	metric m habitat or riffle- ad with aquatic m ed or perched cul red pattem (exam netric antially altered st	pool sequence is acrophytes <u>or</u> pon verts, causeways f nples: straightening ream profile (exar	severely affec ded water <u>or</u> i that constrict t , modification noles: chann	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming
2.	Channel Water - assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of at point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm A A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac	ent reach metric (skip fo assessment reach. xools only. sment reach. ion – assessment reach ssessment reach in-stread g flow <u>or</u> a channel choke ach (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach reach r ment reach has a subst tive aggradation, dredgin	metric m habitat or riffle- ad with aquatic m ed or perched cul red pattem (exam netric antially altered st	pool sequence is acrophytes <u>or</u> pon verts, causeways f nples: straightening ream profile (exar	severely affec ded water <u>or</u> i that constrict t , modification noles: chann	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert).
2.	Channel Water - assessm A Water throughout B No flow, water in p C No water in asses Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm A A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac these disturbances	ent reach metric (skip fo assessment reach. xools only. sment reach. ion – assessment reach ssessment reach in-stread g flow <u>or</u> a channel choke ach (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach reach r ment reach has a subst tive aggradation, dredgin	metric m habitat or riffle- ad with aquatic m ed or perched cul red pattem (exam netric antially altered st	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening ream profile (exar	severely affec ded water <u>or</u> i that constrict t , modification noles: chann	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming
2. 3. 4.	Channel Water - assessm A Water throughout B No flow, water in p C No water in assess Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm A A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac these disturbances B Not A	ent reach metric (skip fo assessment reach. pools only. sment reach. ion – assessment reach assessment reach in-streau g flow <u>or</u> a channel choke each (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach r sment reach has a subst tive aggradation, dredgin s).	metric n habitat or riffle- ad with aquatic m ed or perched cul red pattem (exam netric antially altered st g, and excavation	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening ream profile (exar	severely affec ded water <u>or</u> i that constrict t , modification noles: chann	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming
2.	Channel Water - assessm A Water throughout B No flow, water in p C No water in assess Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm MA A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac these disturbances B Not A Signs of Active Instability	ent reach metric (skip fo assessment reach. pools only. sment reach. ion – assessment reach assessment reach in-streach g flow <u>or</u> a channel choke bach (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach n ment reach has a subst tive aggradation, dredgin a).	metric m habitat or riffle- ad with aquatic m ed or perched cul red pattem (exam netric antially altered st g, and excavation tric	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening ream profile (exar n where appropria	severely affec ded water <u>or</u> i that constrict th , modification nples: channel te channel pro	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming, ofile has not reformed from any of
2. 3. 4.	Channel Water - assessm A Water throughout B No flow, water in p C No water in assess Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm MA A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac these disturbances B Not A Signs of Active Instability Consider only current instability	ent reach metric (skip fo assessment reach. pools only. sment reach. ion – assessment reach assessment reach in-streach g flow <u>or</u> a channel choke bach (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach n ment reach has a subst tive aggradation, dredgin a).	metric n habitat or riffle- id with aquatic m ed or perched cul red pattem (exam netric antially altered st g, and excavation tric from which the	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening ream profile (exar n where appropria stream has cum	severely affec ded water <u>or</u> i that constrict th , modification nples: channel te channel pro	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming, ofile has not reformed from any of ed. Examples of instability include
2. 3. 4.	Channel Water - assessm A Water throughout B No flow, water in p C No water in assess Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm MA A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac these disturbances B Not A Signs of Active Instability Consider only current inst active bank failure, active ch	ent reach metric (skip fo assessment reach. sools only. sment reach. ion – assessment reach assessment reach in-streau g flow <u>or</u> a channel choke each (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach na ment reach has a subst tive aggradation, dredgin a).	metric n habitat or riffle- id with aquatic m ed or perched cul red pattem (exam netric antially altered st g, and excavation tric from which the	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening ream profile (exar n where appropria stream has cum	severely affec ded water <u>or</u> i that constrict th , modification nples: channel te channel pro	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming, ofile has not reformed from any of
2. 3. 4.	Channel Water - assessm A Water throughout B No flow, water in p C No water in assess Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm MA A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac these disturbances B Not A Signs of Active Instability Consider only current instability	ent reach metric (skip fo assessment reach. sools only. sment reach. ion – assessment reach assessment reach in-stread g flow <u>or</u> a channel choke each (examples: undersiz ment reach metric ssessment reach has alte ile – assessment reach na ment reach has a subst tive aggradation, dredgin s). – assessment reach me tability, not past events annel down-cutting (head unstable	metric n habitat or riffle- id with aquatic m ed or perched cul red pattem (exam netric antially altered st g, and excavation tric from which the	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening ream profile (exar n where appropria stream has cum	severely affec ded water <u>or</u> i that constrict th , modification nples: channel te channel pro	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming, ofile has not reformed from any of ed. Examples of instability include
2. 3. 4.	Channel Water - assessm A Water throughout B No flow, water in p C No water in assess Evidence of Flow Restrict A At least 10% of as point of obstructin the assessment re beaver dams). B Not A Feature Pattern - assessm MA A majority of the a B Not A Feature Longitudinal Profit A Majority of assess over widening, ac these disturbances B Not A Signs of Active Instability Consider only current ins active bank failure, active ch A	ent reach metric (skip fo assessment reach, sools only, sment reach. ion – assessment reach sessment reach in-stread g flow <u>or</u> a channel choke ach (examples: undersiz nent reach metric ssessment reach has alte ile – assessment reach has alte tive aggradation, dredgin s). – assessment reach met tability, not past events annel down-cutting (head unstable nel unstable	metric n habitat or riffle- id with aquatic m ed or perched cul red pattem (exam netric antially altered st g, and excavation tric from which the	pool sequence is acrophytes <u>or</u> pon verts, causeways i nples: straightening ream profile (exar n where appropria stream has cum	severely affec ded water <u>or</u> i that constrict th , modification nples: channel te channel pro	mpoundment on flood or ebb within he channel, tidal gates, debris jams, above or below culvert). el down-cutting, existing damming, ofile has not reformed from any of ed. Examples of instability include

A

Streamside Area Interaction - streamside area metric 6.

Consider for the Left Bank (LB) and the Right Bank (RB).

	RB □A XB
□c	□c

Little or no evidence of conditions that adversely affect reference interaction

Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])

Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching)) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

7. Water Quality Stressors - assessment reach/intertidal zone metric

Check all that apply.

- Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam) ΠA
- Excessive sedimentation (burying of stream features or intertidal zone) ⊡в
 - Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- Odor (not including natural sulfide odors)
 - Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes" section.
- ĒF Livestock with access to stream or intertidal zone
- Excessive algae in stream or intertidal zone
- Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc.) □н
 - (explain in "Notes/Sketch" section) Other:
- B Little to no stressors

Recent Weather - watershed metric (skip for Tidal Marsh Streams) 8.

For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.

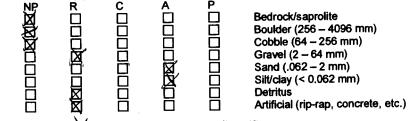
- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- Drought conditions and rainfall exceeding 1 inch within the last 48 hours ⊡в
- No drought conditions XC

9.

- Large or Dangerous Stream assessment reach metric
- Yes XNo Is stream too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Natural In-stream Habitat Types – assessment reach metric

Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive 10a Yes sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)


10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams)

MA	Multiple aquatic macrophytes and aquatic mosses	
•	(including liverworts, lichens, and algal mats)	
₿	Multiple sticks and/or leaf packs and/or emergent	
—	vegetation	
	Multiple snags and logs (including lap trees) 5% undercut banks and/or root mats and/or roots	5 Σ Πκ
M.	in banks extend to the normal wetted perimeter	
	Little or no habitat	

5% oysters or other natural hard bottoms Submerged aquatic vegetation Low-tide refugia (pools) Sand bottom 5% vertical bank along the marsh Little or no habitat

11. Bedform and Substrate - assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- XNo Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams) 11a.
 [Yes]
- Bedform evaluated. Check the appropriate box(es). 11b.
 - Riffle-run section (evaluate 11c) [Z]∧
 - Pool-glide section (evaluate 11d)
 - Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row. Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.

Daho 11d. TYes Are pools filled with sediment?

UTIUpper

12. Aquatic Life - assessment reach metric (skip for Tidal Marsh Streams)

12a. XYes No Was an in-stream aquatic life assessment performed as described in the User Manual?

If No, select one of the following reasons and skip to Metric 13. INo Water Other:

	12b.	∏Yes	□No	Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all tha apply. If No, skip to Metric 13.
			Aqua Beett Cadd Asiar Dipte Mayfi Moga Midg Mosq Othe Salar Stone	tic reptiles tic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) es (including water pennies) isfly larvae (Trichoptera [T]) a clam (<i>Corbicula</i>) iacean (isopod/amphipod/crayfish/shrimp) selfly and dragonfly larvae rans (true files) y larvae (Ephemeroptera [E]) loptera (alderfly, fishfly, dobsonfly larvae) as/mõsquito larvae uito fish (<i>Gambusia</i>) or mud minnows (<i>Umbra pygmaea</i>) els/Clams (not <i>Corbicula</i>) fish nanders/tadpoles
13.	Stream	 n side Ar	ea Grou he Left Little Mode Seve	nd Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland or no alteration to water storage capacity over a majority of the streamside area erate alteration to water storage capacity over a majority of the streamside area are alteration to water storage capacity over a majority of the streamside area pre alteration to water storage capacity over a majority of the streamside area are alteration to water storage capacity over a majority of the streamside area pre alteration to water storage capacity over a majority of the streamside area are alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soi baction, livestock disturbance, buildings, man-made levees, drainage pipes)
14.	Strean Consid LB DA DB XC	nside An ler for th RB DA DB KAC	ea Wate ne Left E Majo Majo	r Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Bank (LB) and the Right Bank (RB) of the streamside area. rity of streamside area with depressions able to pond water ≥ 6 inches deep rity of streamside area with depressions able to pond water 3 to 6 inches deep rity of streamside area with depressions able to pond water < 3 inches deep
15.	Wetlan Consid	d Prese ler for th	nce – st ne Left E er of asse	reamside area metric (skip for Tidal Marsh Streams) Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal Resonant reach. Wetlands present in the streamside area?
k	Basefle	ow Contr all contr Stream Ponds	ributors ns and/o (include	 assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) within the assessment reach or within view of <u>and</u> draining to the assessment reach. r springs (jurisdictional discharges) wet detention basins; do not include sediment basins or dry detention basins) at passes some flow during low-flow periods affecting assessment reach (ex: beaver dam, bottom-release dam)

- X Evidence of bank seepage or sweating (iron oxidizing bacteria in water indicates seepage)
- Stream bed or bank soil reduced (dig through deposited sediment if present) KΕ
- ΠF None of the above

17. Baseflow Detractors - assessment area metric (skip for Tidal Marsh Streams)

Check all that apply.

15. We

16. Ba Ch D ×

- Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation)
- Пв Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □с Urban stream (≥ 24% impervious surface for watershed)
- Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach
- Assessment reach relocated to valley edge
- ΠF None of the above

18. Shading - assessment reach metric (skip for Tidal Marsh Streams)

- Consider aspect. Consider "leaf-on" condition.
 - Stream shading is appropriate for the stream category (may include gaps associated with natural processes)
- Degraded (example: scattered trees)
 - Stream shading is gone or largely absent

UTI yper

19. Buffer Width - streamside area metric (skip for Tidal Marsh Streams)

Consider "vegetated buffer" and "wooded buffer"	" separately for left bank (LB) and right bank (RB) starting at the top of bank out
to the first break.	

Vegetated	Wooded	
LB RB	LB RB	
LB RB XIA XIA		≥ 100 feet wide or extends to the edge of the watershed
Π̃Β Π̃Β	🗍 В 🗍 В	From 50 to < 100 feet wide
		From 30 to < 50 feet wide
	⊡o ⊠o	From 10 to < 30 feet wide
	SE DE	< 10 feet wide <u>or</u> no trees

20. Buffer Structure - streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).

••••••		
LB	RB	
		Mature forest
	□в	Non-mature woody vegetation or modified vegetation structure
DXC	MC	Herbaceous vegetation with or without a strip of trees < 10 feet wide

	nervaceous vegeration with o
ffb	Maintained shrubs

Little or no vegetation

21. Buffer Stressors - streamside area metric (skip for Tidal Marsh Streams)

Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet).

If none of the following stressors occurs on either bank, check here and skip to Metric 22: 🔲

Abuts	< 30 feet	30-50 feet	
LB RB	LJB RB	LB RB	
	XZÍA ⊡A	XIA 🗆 A	
	́ 🗋 В 🛛 В	[]В []В	
		□c □c	

Row crops
Maintained turf
Pasture (no livestock)/commercial horticulture
Pasture (active livestock use)

22. Stem Density - streamside area metric (skip for Tidal Marsh Streams)

Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).

LB	RB	
		Med
	□A ⊠B	Low
□B Dac	ПС	No

Medium	to	high	stem	densit	y
--------	----	------	------	--------	---

stem density

No wooded riparian buffer or predominantly herbaceous species or bare ground

23. Continuity of Vegetated Buffer - streamside area metric (skip for Tidal Marsh Streams)

Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide.

LB	RB
X A	図/
ГВ	

٦D

ΠE

- The total length of buffer breaks is < 25 percent.
- ĨΑ]Β The total length of buffer breaks is between 25 and 50 percent.
- The total length of buffer breaks is > 50 percent. ⊡c
- 24. Vegetative Composition First 100 feet of streamside area metric (skip for Tidal Marsh Streams)

Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat.

25.	Condu	ctivity - a	ssessment reach metric (skip for all Coastal Plain streams)
)XC	∀ c	communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent <u>or</u> communities with non-native invasive species dominant over a large portion of expected strata <u>or</u> communities composed of planted stands of non-characteristic species <u>or</u> communities inappropriately composed of a single species <u>or</u> no vegetation.
	⊟в	⊟в	Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
	LB DA	RB ∐A	Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse.

No Was conductivity measurement recorded? 25a. 🛛 Yes

25b	Check the box	corresponding to the c	onductivity measureme	ent (units of microsieme	ens per centimeter).
	A < 46	□B 46 to < 67	□C 67 to < 79	□D 79 to < 230	□ E ≥ 230

Notes/Sketch:

NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Banner Farms - UT1 Upper	Date of Evaluation	12/18/2018
Stream Category Ma2	Assessor Name/Organization	M. Caddell
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		YES
Additional stream information/supplementary measurements included (Y/N)		NO
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

UTIlower

NC SAM FIEL	D ASSESSM	ENT FORM
Accompanies	User Manual	Version 2.1

_			ACC					
	USACE AID	#:			NC	DWR#		
	NSTRUCTIO	NS: Attach a sl	ketch of the assessm	nent area and p	hotographs	Attach a copy	of the USGS 7	.5-minute topographic
	INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic quadrangle, and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property					on the same property.		
identify and number all reaches on the attached map, and include a separate form for each reach. See the NC SAN					SAM User Manual for			
6	letailed desc	riptions and expla	anations of requested	information. R	ecord in th	e "Notes" section	if supplementary	measurements were
			ser Manual for example					
	NOTE EVIDE	NCE OF STRESS	ORS AFFECTING TH					ment area).
		TE INFORMATION				وشعبتها وا		
	I. Project nan		Banner Farr				1181201	3
	3. Applicant/o	wner name:	wildland	5	4. Assesso	or name/organizatio	n: M.Ca	adeli
5	5. County:	<i>t</i>	tenderson	,	6. Nearest	named water body	~	
7	. River basin	I: "	French R	road	on USG	S 7.5-minute quad	French	Broad Riner
8	3. Site coordii	nates (decimal deg	rees, at lower end of a		h): ふり	35220 -	02.553	56
1		ORMATION: (den	th and width can be	approximations)	,		
		r (show on attache				sessment reach ev	aluated (feet):	550
			riffle, if present) to top		10'			ss channel depth.
		vidth at top of bank			V V	t reach a swamp str		
			low Intermittent flo			croaon a swamp su		140
		TEGORY INFORM			Sueam			
	5. NC SAM 2		17					
1	D: NC SAM 2	Lone:	"⊠Mountains (M)	Piedmont (P) <u> </u>	ner Coastal Plain (I)		pastal Plain (O)
1	6 Estimated	geomorphic	·		,			
1'		pe (skip for				□ □ ►		
1		sh Stream):	(more sinuous stream	m flatter vallev sl	0000)		stream; steeper	vallev elono)
А.		-			• •			- , ,
P(1	7. Watershe	• •	□Size 1 (< 0.1 mi ²)	⊠Size 2 (0.1	to < 0.5 m ²) Size 3 (0.5 t	o<5 mi²) 🔲	Size 4 (≥ 5 mi²)
		Marsh Stream)	•					
		INFORMATION:	_	_				
1	8. Were regu	ulatory consideratio	ons evaluated? Yes	s ∐NolfYes,ch	heck all that	apply to the assess	sment area.	/
	Section	10 water						
				rout Waters		Water Supply Wa	atershed (🔲 🗌]∥⊡∭⊠[∨□∨)
	Essenti	al Fish Habitat	Primary Nur			Water Supply Wa		
	=	al Fish Habitat	Primary Nur	rsery Area			ers/Outstanding	
	=	owned property	Primary Nur		n effect	Water Supply Water Supply Water Supply Water Supply Water Sensitive Content Sensitive Senai Sensitive Sensitive Senai Sensitiv	ers/Outstanding Waters	Resource Waters
	Publichy Anadro	owned property mous fish	Primary Nur NCDWR rip 303(d) List	rsery Area arian buffer rule i	n effect	Water Supply Water High Quality Water Nutrient Sensitive CAMA Area of Element	ers/Outstanding Waters nvironmental Co	Resource Waters
	Publichy Anadro Docum	v owned property mous fish ented presence of	Primary Nur	rsery Area arian buffer rule i	n effect	Water Supply Water High Quality Water Nutrient Sensitive CAMA Area of Element	ers/Outstanding Waters nvironmental Co	Resource Waters
	Publicly Anadro Docume	v owned property mous fish ented presence of ecies:	Primary Nur NCDWR rip 303(d) List a federal and/or state	rsery Area arian buffer rule i	n effect	Water Supply Water High Quality Water Nutrient Sensitive CAMA Area of Element	ers/Outstanding Waters nvironmental Co	Resource Waters
4	Publicly Anadro Docume List spe	v owned property mous fish ented presence of ecies: ated Critical Habita	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species)	sery Area arian buffer rule i listed protected s	n effect pecies with	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of El in the assessment a	ers/Outstanding Waters nvironmental Co area.	Resource Waters
1	Publich Anadro Docume List spe Designa 9. Are additio	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream informa	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m	sery Area arian buffer rule i listed protected s neasurements inc	n effect pecies with cluded in "No	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of El in the assessment a otes/Sketch" section	ers/Outstanding Waters hvironmental Co hrea. h or attached?	Resource Waters
1.	Publich Anadro Docume List spe Designa 9. Are additio	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream informa	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species)	sery Area arian buffer rule i listed protected s neasurements inc	n effect pecies with cluded in "No	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of El in the assessment a otes/Sketch" section	ers/Outstanding Waters hvironmental Co hrea. h or attached?	Resource Waters
	Publichy Anadrou Docume List spe Designa 9. Are additio	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream informa	Primary Nur NCDWR rip 303(d) List a federal and/or state t (list species) ation/supplementary m	sery Area arian buffer rule i listed protected s neasurements inc	n effect pecies with cluded in "No	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of El in the assessment a otes/Sketch" section	ers/Outstanding Waters hvironmental Co hrea. h or attached?	Resource Waters
	Publichy Anadrou Docume List spe Designa 9. Are additio Channel V KA V	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme	Primary Nur NCDWR rip 303(d) List a federal and/or state t (list species) ation/supplementary m ent reach metric (skip ssessment reach.	sery Area arian buffer rule i listed protected s neasurements inc	n effect pecies with cluded in "No	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of El in the assessment a otes/Sketch" section	ers/Outstanding Waters hvironmental Co hrea. h or attached?	Resource Waters
	Publichy Anadrou Docume List spe Designa 9. Are additio Channel V XIA V B N	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme Vater throughout a	Primary Nur NCDWR rip 303(d) List a federal and/or state (list species) ation/supplementary m ont reach metric (skip ssessment reach. pols only.	sery Area arian buffer rule i listed protected s neasurements inc	n effect pecies with cluded in "No	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of El in the assessment a otes/Sketch" section	ers/Outstanding Waters hvironmental Co hrea. h or attached?	Resource Waters
1.	Publichy Anadrou Docume List spe Designa 9. Are addition Channel W XIA V B N C N	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme Vater throughout a No flow, water in po No water in assess	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ont reach metric (skip ssessment reach. bols only. ment reach.	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea	n effect pecies with cluded in "No	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of El in the assessment a otes/Sketch" section	ers/Outstanding Waters hvironmental Co hrea. h or attached?	Resource Waters
	Publichy Anadrou Docume List spe Designa 9. Are additio Channel W XIA V B N C N Evidence	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme Nater throughout a No flow, water in po No water in assess of Flow Restriction	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ont reach metric (skip ssessment reach. bols only. ment reach. on – assessment read	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric	n effect species with cluded in "No uns and Tic	Water Supply Wa High Quality Wat Nutrient Sensitiv CAMA Area of El in the assessment a otes/Sketch" section dal Marsh Streams	ers/Outstanding Waters nvironmental Cou rea. n or attached?	Resource Waters ncern (AEC)]Yes []No
1.	Publichy Anadrou Docume List spe Designa 9. Are additio Channel V XIA V B N C N Evidence	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme Nater throughout a No flow, water in po No water in assess of Flow Restriction At least 10% of ass	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. only. ment reach. on – assessment reach sessment reach in-stre	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rif	n effect species with cluded in "No ems and Tic fle-pool seq	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of E in the assessment a otes/Sketch" section dai Marsh Streams	ers/Outstanding Waters nvironmental Cou rea. n or attached? [) iffected by a flow	Resource Waters ncern (AEC)]Yes []No v restriction <u>or</u> fill to the
1.	Publichy Anadrou Docume List spe Designa 9. Are addition Channel W XA V B N C N Evidence	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Nater throughout a No flow, water in po No water in assess of Flow Restriction At least 10% of ass point of obstructing	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bols only. ment reach. on – assessment reach flow <u>or</u> a channel cho	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic	n effect pecies withi sluded in "No ans and Tic fle-pool seq	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of Ei in the assessment a otes/Sketch" section dai Marsh Streams uence is severely a es or ponded water	ers/Outstanding Waters hvironmental Cou rea. h or attached? [) iffected by a flow <u>or</u> impoundmen	Resource Waters ncern (AEC) Yes No Yes No v restriction <u>or</u> fill to the it on flood or ebb within
1.	Publichy Anadrou Docume List spe Designa 9. Are additid Channel V XIA V B N C N Evidence	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme Vater throughout a No flow, water in po No water in assess of Flow Restriction At least 10% of assessment real	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bols only. ment reach. on – assessment reach flow <u>or</u> a channel cho	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic	n effect pecies withi sluded in "No ans and Tic fle-pool seq	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of Ei in the assessment a otes/Sketch" section dai Marsh Streams uence is severely a es or ponded water	ers/Outstanding Waters hvironmental Cou rea. h or attached? [) iffected by a flow <u>or</u> impoundmen	Resource Waters ncern (AEC)]Yes []No v restriction <u>or</u> fill to the
1.	Publichy Anadrou Docume List spe Designa 9. Are additio Channel V XIA V B N C N Evidence	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Nater throughout a No flow, water in po No water in assess of Flow Restriction At least 10% of assession to f obstructing he assessment rea waver dams).	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bols only. ment reach. on – assessment reach flow <u>or</u> a channel cho	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic	n effect pecies withi sluded in "No ans and Tic fle-pool seq	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of Ei in the assessment a otes/Sketch" section dai Marsh Streams uence is severely a es or ponded water	ers/Outstanding Waters hvironmental Cou rea. h or attached? [) iffected by a flow <u>or</u> impoundmen	Resource Waters ncern (AEC) Yes No Y restriction <u>or</u> fill to the it on flood or ebb within
1. 2.	Publichy Anadrou Docume List spe Designa 9. Are addition Channel V XIA V B N C N Evidence XA A F B N B N	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme Nater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of ass point of obstructing he assessment rea peaver dams). Not A	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m int reach metric (skip issessment reach. bols only. ment reach. on – assessment reach flow <u>or</u> a channel cho ach (examples: underst	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic	n effect pecies withi sluded in "No ans and Tic fle-pool seq	Water Supply Wa High Quality Wat Nutrient Sensitiw CAMA Area of Ei in the assessment a otes/Sketch" section dai Marsh Streams uence is severely a es or ponded water	ers/Outstanding Waters hvironmental Cou rea. h or attached? [) iffected by a flow <u>or</u> impoundmen	Resource Waters ncern (AEC) Yes No Yes No v restriction <u>or</u> fill to the it on flood or ebb within
1.	□ Publicly □ Anadrou □ Docume □ List spe □ Designa 9. Are addition Channel W □ C N Evidence □ C N Evidence □ A A p t t 0 B N Evidence	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restriction At least 10% of ass point of obstructing the assessment real peaver dams). Not A attern – assessment	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip issessment reach. bols only. ment reach. on – assessment reach issessment reach in-stre- flow <u>or</u> a channel cho isch (examples: unders-	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi sked with aquatic sized or perched	n effect species with cluded in "No ams and Tic file-pool seq macrophyte culverts, ca	□Water Supply Wa □High Quality Wat □Nutrient Sensitive □CAMA Area of E in the assessment a <u>otes/Sketch</u> " section tai Marsh Streams uence is severely a es <u>or</u> ponded water useways that const	ers/Outstanding Waters nvironmental Course rea. <u>or attached?</u>	Resource Waters ncern (AEC) TYes No Y restriction or fill to the t on flood or ebb within tidal gates, debris jams,
1. 2.	□ Publicly □ Anadrou □ Docume □ List spe □ Designa 9. Are addition Channel W □ C N Evidence □ C N Evidence □ A A p t t 0 B N Evidence	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Nater – assessme Nater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of ass point of obstructing he assessment rea peaver dams). Not A attern – assessme A majority of the assessme	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m int reach metric (skip issessment reach. bols only. ment reach. on – assessment reach flow <u>or</u> a channel cho ach (examples: underst	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi sked with aquatic sized or perched	n effect species with cluded in "No ams and Tic file-pool seq macrophyte culverts, ca	□Water Supply Wa □High Quality Wat □Nutrient Sensitive □CAMA Area of E in the assessment a <u>otes/Sketch</u> " section tai Marsh Streams uence is severely a es <u>or</u> ponded water useways that const	ers/Outstanding Waters nvironmental Course rea. <u>or attached?</u>	Resource Waters ncern (AEC) TYes No Y restriction or fill to the t on flood or ebb within tidal gates, debris jams,
1. 2.	□ Publicly □ Anadrou □ Docume □ List spe □ Designa 9. Are addition Channel V ⊠A V □ B N □ C N Evidence □ A A t b □ B N Feature Pa	v owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restriction At least 10% of ass point of obstructing the assessment real peaver dams). Not A attern – assessment	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip issessment reach. bols only. ment reach. on – assessment reach issessment reach in-stre- flow <u>or</u> a channel cho isch (examples: unders-	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi sked with aquatic sized or perched	n effect species with cluded in "No ams and Tic file-pool seq macrophyte culverts, ca	□Water Supply Wa □High Quality Wat □Nutrient Sensitive □CAMA Area of E in the assessment a <u>otes/Sketch</u> " section tai Marsh Streams uence is severely a es <u>or</u> ponded water useways that const	ers/Outstanding Waters nvironmental Course rea. <u>or attached?</u>	Resource Waters ncern (AEC) TYes No Y restriction or fill to the t on flood or ebb within tidal gates, debris jams,
1. 2. 3.	□ Publichy □ Anadrou □ Docume □ Designa 9. Are addition Channel W XIA W □ B M □ C M Evidence XA A □ B M Feature Pa XA A □ B M □ B M Feature Pa XA A □ B M	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of ass point of obstructing he assessment real waver dams). Not A attern – assessment A majority of the ass Not A	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ont reach metric (skip ssessment reach, bols only, ment reach. on – assessment reach sessment reach in-stre flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic sized or perched sized or perched	n effect species with cluded in "No ams and Tic file-pool seq macrophyte culverts, ca	□Water Supply Wa □High Quality Wat □Nutrient Sensitive □CAMA Area of E in the assessment a <u>otes/Sketch</u> " section tai Marsh Streams uence is severely a es <u>or</u> ponded water useways that const	ers/Outstanding Waters nvironmental Course rea. <u>or attached?</u>	Resource Waters ncern (AEC) <u>Yes No</u> Yes No v restriction <u>or</u> fill to the t on flood or ebb within tidal gates, debris jams,
1. 2.	Publichy Anadrou Docume List spe Designa 9. Are additio Channel V XIA V B N C N Evidence XA A Feature Pa XA A D B N Feature Lo	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assession of Flow Restrictic No water in assession of Flow Restrictic Not A attern – assession Not A attern – assession Not A attern – assession Not A	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bon – assessment reach flow or a channel cho sessment reach in-stro flow or a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifo ked with aquatic sized or perched litered pattern (ex h metric	n effect pecies within cluded in "No erns and Tic erns and Tic file-pool seq macrophyte culverts, car camples: stra	□Water Supply Water Supply Water Sensitive □High Quality Water Sensitive □Nutrient Sensitive □CAMA Area of Element a □tes/Sketch" section dai Marsh Streams usence is severely a useways that const aightening, modifica	ers/Outstanding a Waters nvironmental Con area. <u>n or attached?</u>	Resource Waters ncern (AEC)]Yes []No]Yes []No it on flood or ebb within it on flood or ebb within itidal gates, debris jams, How culvert).
1. 2. 3.	□ Publichy □ Anadrou □ Docume □ Designa 9. Are addition Channel V XIA V □ B N □ C N Evidence ↓ A A □ B N Feature Pa ↓ A A □ B N Feature Pa ↓ A A □ B N Feature Lo ↓ A N	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Nater throughout a No flow, water in po No water in assession of Flow Restrictic No water in assession to assessment rea seaver dams). Not A attern – assessment A majority of the assession Not A angitudinal Profile Majority of assession	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. on – assessment reach flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic sized or perched litered pattern (ex h metric ostantially altered	n effect pecies within cluded in "Not erns and Tic erns and Tic file-pool seq macrophytic culverts, car camples: stra	□Water Supply Water Supply Water Supply Water Sensitive □High Quality Water Sensitive □Nutrient Sensitive □CAMA Area of Element a □tes/Sketch" section dai Marsh Streams uence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch	ers/Outstanding Waters nvironmental Cou rea. <u>n or attached?</u> <u>or attached?</u> <u>or</u> impoundmentic ict the channel, tion above or be nannel down-cut	Resource Waters ncern (AEC) <u>Yes</u> <u>No</u> <u>Yes</u> <u>No</u> <u>it</u> to the it on flood or ebb within tidal gates, debris jams, <u>How culvert</u>).
1. 2. 3.	Publichy Anadrou Docume List spe Designa 9. Are additio Channel V XIA V B N Channel V XIA V B N Evidence XA A Feature Pa DA A S Feature Lo XA N O B N Feature Lo	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assession of Flow Restrictic No water in assession to assessment reason opint of obstructing he assessment reason opint of obstructing he assessment reason opint of obstructing he assessment reason opint of assession over widening, actively of the assession of the assession of assession over widening, actively of the assession of the assession of the assession over widening, actively of the assession over widening actively over widening actively of the assession over widening actively over widening	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bols only. ment reach. flow <u>or</u> a channel cho sessment reach in-stro flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach nent reach has a sub ve aggradation, dredge	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic sized or perched litered pattern (ex h metric ostantially altered	n effect pecies within cluded in "Not erns and Tic erns and Tic file-pool seq macrophytic culverts, car camples: stra	□Water Supply Water Supply Water Supply Water Sensitive □High Quality Water Sensitive □Nutrient Sensitive □CAMA Area of Element a □tes/Sketch" section dai Marsh Streams uence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch	ers/Outstanding Waters nvironmental Cou rea. <u>n or attached?</u> <u>or attached?</u> <u>or</u> impoundmentic ict the channel, tion above or be nannel down-cut	Resource Waters ncern (AEC) <u>Yes</u> <u>No</u> <u>Yes</u> <u>No</u> <u>it</u> to the it on flood or ebb within tidal gates, debris jams, <u>How culvert</u>).
1. 2. 3.	Publichy Anadrou Anadrou Docume List spe Designa 9. Are addition Channel V KIA V B Channel V KIA V KIA V Channel V KIA	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Water throughout a No flow, water in po No water in assession of Flow Restrictic No water in assession to assessment rea weaver dams). Not A attern – assessment weaver dams). Not A attern – assessment Not A anajority of the assess Not A ongitudinal Profile Majority of assession over widening, actin hese disturbances)	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bols only. ment reach. flow <u>or</u> a channel cho sessment reach in-stro flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach nent reach has a sub ve aggradation, dredge	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic sized or perched litered pattern (ex h metric ostantially altered	n effect pecies within cluded in "Not erns and Tic erns and Tic file-pool seq macrophytic culverts, car camples: stra	□Water Supply Water Supply Water Supply Water Sensitive □High Quality Water Sensitive □Nutrient Sensitive □CAMA Area of Element a □tes/Sketch" section dai Marsh Streams uence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch	ers/Outstanding Waters nvironmental Cou rea. <u>n or attached?</u> <u>or attached?</u> <u>or</u> impoundmentic ict the channel, tion above or be nannel down-cut	Resource Waters ncern (AEC) <u>Yes</u> <u>No</u> <u>Yes</u> <u>No</u> <u>it</u> to the it on flood or ebb within tidal gates, debris jams, <u>How culvert</u>).
1. 2. 3.	Publichy Anadrou Anadrou Docume List spe Designa 9. Are additio Channel V XIA V B KIA V B C KIA V B C KIA V B C KIA V B C KIA V C C C C C C C C C C C C C C C C C C C	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assession of Flow Restrictic No water in assession to assessment reason opint of obstructing he assessment reason opint of obstructing he assessment reason opint of obstructing he assessment reason opint of assession over widening, actively of the assession of the assession of assession over widening, actively of the assession of the assession of the assession over widening, actively of the assession over widening actively over widening actively of the assession over widening actively over widening	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bols only. ment reach. flow <u>or</u> a channel cho sessment reach in-stro flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach nent reach has a sub ve aggradation, dredge	sery Area arian buffer rule i listed protected s neasurements inc o for Size 1 strea ch metric earn habitat or rifi oked with aquatic sized or perched litered pattern (ex h metric ostantially altered	n effect pecies within cluded in "Not erns and Tic erns and Tic file-pool seq macrophytic culverts, car camples: stra	□Water Supply Water Supply Water Supply Water Sensitive □High Quality Water Sensitive □Nutrient Sensitive □CAMA Area of Element a □tes/Sketch" section dai Marsh Streams uence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch	ers/Outstanding Waters nvironmental Cou rea. <u>n or attached?</u> <u>or attached?</u> <u>or</u> impoundmentic ict the channel, tion above or be nannel down-cut	Resource Waters ncern (AEC) <u>Yes</u> <u>No</u> <u>Yes</u> <u>No</u> <u>it</u> to the it on flood or ebb within tidal gates, debris jams, <u>How culvert</u>).
1. 2. 3.	□ Publichy □ Anadrou □ Docume □ List spe □ Designa 9. Are addition 0. Channel W XIA W □ B M □ C M Evidence 0. A A 0 Feature Pa 2. A A 1 B M Feature Pa 3. A A 1 B M Feature Pa 3. A A 1 B M 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of assess of Flow Restrictic At least 10% of assess obtin of obstructing he assessment real waver dams). Not A attern – assessment A majority of the ass Not A ongitudinal Profile Majority of assess over widening, acti- hese disturbances) Not A Active Instability –	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ont reach metric (skip ssessment reach, bols only, ment reach. on – assessment reach flow <u>or</u> a channel cho sessment reach in-stre flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach nent reach has a sub ve aggradation, dredg	sery Area arian buffer rule in listed protected s measurements inco- p for Size 1 strea ch metric earn habitat or rifi- oked with aquatic sized or perched litered pattern (ex h metric ostantially altered ging, and excava metric	n effect pecies within cluded in "No arms and Tic arms and Tic file-pool seq macrophyte culverts, can camples: stra camples: stra tion where	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of El in the assessment a otes/Sketch" section dal Marsh Streams usence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch appropriate channe	ers/Outstanding a Waters Invironmental Col Irea. In or attached? [) Inffected by a flow or impoundmen int the channel, attion above or be nannel down-cut of profile has no	Resource Waters ncern (AEC) Tyes No Yes No Yes No N
1. 2. 3. 4.	□ Publichy □ Anadrou □ Docume □ List spe □ Designa 9. Are addition 0. Channel W XIA W □ B M □ C M Evidence 0. A A 0 Feature Pa 2. A A 1 B M Feature Pa 3. A A 1 B M Feature Pa 3. A A 1 B M 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B M 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of assess of Flow Restrictic At least 10% of assess obtin of obstructing he assessment real waver dams). Not A attern – assessment A majority of the ass Not A ongitudinal Profile Majority of assess over widening, acti- hese disturbances) Not A Active Instability –	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ont reach metric (skip ssessment reach, bols only, ment reach. on – assessment reach flow <u>or</u> a channel cho sessment reach in-stre flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach nent reach has a sub ve aggradation, dredg	sery Area arian buffer rule in listed protected s measurements inco- p for Size 1 strea ch metric earn habitat or rifi- oked with aquatic sized or perched litered pattern (ex h metric ostantially altered ging, and excava metric	n effect pecies within cluded in "No arms and Tic arms and Tic file-pool seq macrophyte culverts, can camples: stra camples: stra tion where	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of El in the assessment a otes/Sketch" section dal Marsh Streams usence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch appropriate channe	ers/Outstanding a Waters Invironmental Col Irea. In or attached? [) Inffected by a flow or impoundmen int the channel, attion above or be nannel down-cut of profile has no	Resource Waters ncern (AEC) Tyes No Yes No Yes No N
1. 2. 3. 4.	□ Publichy □ Anadrou □ Docume □ List spe □ Designa 9. Are addition 9. Are additing additing additing addition 9. Are addition	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of assess of Flow Restrictic At least 10% of assess of both assessment real water – assessment he assessment real water – assessment attern – assessment A majority of the ass Not A ongitudinal Profile Majority of assess wer widening, acti- hese disturbances) Not A Active Instability – only current insta	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ont reach metric (skip ssessment reach, bols only, ment reach. on – assessment reach flow <u>or</u> a channel cho sessment reach in-stre flow <u>or</u> a channel cho sessment reach in-stre ent reach metric sessment reach has a e – assessment reach has a e – assessment reach cho nent reach has a sub ve aggradation, dredg	sery Area arian buffer rule in listed protected s measurements inco- p for Size 1 strea ch metric earn habitat or rifi- oked with aquatic sized or perched litered pattern (ex h metric ostantially altered ging, and excava metric nts from which the	n effect pecies within cluded in "Not arms and Tic arms and Tic file-pool seq macrophyte culverts, can camples: stra camples: stra to stream pro- tion where	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of El in the assessment a otes/Sketch" section dal Marsh Streams usence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch appropriate channe has currently rec	ers/Outstanding a Waters hvironmental Col area. <u>n or attached?</u> <u>or attached?</u>)))))))))))))))))))	Resource Waters ncern (AEC) Yes No Yes No Yes No Yes kodd or ebb within tidal gates, debris jams, How culvert). ting, existing damming, t reformed from any of les of instability include
1. 2. 3. 4.	□ Publichy □ Anadrou □ Docume □ List spe □ Designa 9. Are addition 9. Are additing additing additing addition 9. Are addition	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of assess of Flow Restrictic At least 10% of assess opint of obstructing he assessment real beaver dams). Not A attern – assessment A majority of the asi Not A ongitudinal Profile Majority of assess ver widening, acti- hese disturbances) Not A Active Instability – only current insta- k failure, active cha	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. bols only. ment reach. on – assessment reach sessment reach in-stre flow <u>or</u> a channel cho sessment reach in-stre flow <u>or</u> a channel cho sessment reach in-stre ent reach metric sessment reach has a e – assessment reach has a e – assessment reach cho nent reach has a sub ve aggradation, dredg - assessment reach reach reach reach manel down-cutting (he	sery Area arian buffer rule in listed protected s measurements inco- p for Size 1 strea ch metric earn habitat or rifi- oked with aquatic sized or perched litered pattern (ex h metric ostantially altered ging, and excava metric nts from which the	n effect pecies within cluded in "Not arms and Tic arms and Tic file-pool seq macrophyte culverts, can camples: stra camples: stra to stream pro- tion where	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of El in the assessment a otes/Sketch" section dal Marsh Streams usence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch appropriate channe has currently rec	ers/Outstanding a Waters hvironmental Col area. <u>n or attached?</u> <u>or attached?</u>)))))))))))))))))))	Resource Waters ncern (AEC) Yes No Yes No Yes No Yes No Yes debris jams, How culvert). ting, existing damming, t reformed from any of les of instability include
1. 2. 3. 4.	□ Publichy □ Anadrou □ Docume □ List spe □ Designa 9. Are addition 9. Are add	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of assess of Flow Restrictic At least 10% of assess of both assessment real water – assessment he assessment real water – assessment attern – assessment A majority of the ass Not A ongitudinal Profile Majority of assess wer widening, acti- hese disturbances) Not A Active Instability – only current insta	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ont reach metric (skip ssessment reach, ools only, ment reach. on – assessment reach flow <u>or</u> a channel cho sessment reach in-stre flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach has a e – assessment reach cho nent reach has a sub ve aggradation, dredg - assessment reach reach reach annel down-cutting (he nstable	sery Area arian buffer rule in listed protected s measurements inco- p for Size 1 strea ch metric earn habitat or rifi- oked with aquatic sized or perched litered pattern (ex h metric ostantially altered ging, and excava metric nts from which the	n effect pecies within cluded in "Not arms and Tic arms and Tic file-pool seq macrophyte culverts, can camples: stra camples: stra to stream pro- tion where	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of El in the assessment a otes/Sketch" section dal Marsh Streams usence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch appropriate channe has currently rec	ers/Outstanding a Waters hvironmental Col area. <u>n or attached?</u> <u>or attached?</u>)))))))))))))))))))	Resource Waters ncern (AEC) Yes No Yes No Yes No Yes No Yes debris jams, How culvert). ting, existing damming, t reformed from any of les of instability include
1. 2. 3. 4.	□ Publichy □ Anadrou □ Docume □ List spe □ Designa 9. Are additio Channel V ○ A V □ B N □ C N Evidence ○ A A □ B N Feature Pa ○ A A □ B N Feature La ○ A A □ B	y owned property mous fish ented presence of ecies: ated Critical Habita onal stream information Water – assessme Vater throughout a No flow, water in po No water in assess of Flow Restrictic At least 10% of assess of Flow Restrictic At least 10% of assess of both assessment real water – assessment the assessment real water – assessment attern – assessment A majority of the ass Not A ongitudinal Profile Majority of assess wer widening, acti- hese disturbances) Not A Active Instability – only current insta- k failure, active cha c 10% of channel u	Primary Nur NCDWR rip 303(d) List a federal and/or state it (list species) ation/supplementary m ent reach metric (skip ssessment reach. ools only. ment reach. on – assessment reach flow <u>or</u> a channel cho sessment reach in-stro flow <u>or</u> a channel cho ach (examples: unders ent reach metric sessment reach has a e – assessment reach has a e – assessment reach cho nent reach has a sub ve aggradation, dredg - assessment reach reach reach nent reach has a sub ve aggradation, dredg - assessment reach reach reach nent reach has a sub ve aggradation, dredg - assessment reach reach reach reach nent reach has a sub ve aggradation, dredg - assessment reach reach reach reach reach reach reach net reach has a sub the aggradation dredge - assessment reach reach reach reach reach reach reach net reach has a sub the aggradation dredge - assessment reach net reach reach reach reach net reach has a sub the aggradation dredge - assessment reach net reach reach reach reach reach net reach has a sub the aggradation dredge - assessment reach net reach reach reach net reach net reach has a sub the aggradation dredge - assessment reach net reach net reach net reach net reach has a sub the aggradation dredge - assessment reach net reach net reach net reach net reach net reach has a sub - assessment reach net reac	sery Area arian buffer rule in listed protected s measurements inco- p for Size 1 strea ch metric earn habitat or rifi- oked with aquatic sized or perched litered pattern (ex h metric ostantially altered ging, and excava metric nts from which the	n effect pecies within cluded in "Not arms and Tic arms and Tic file-pool seq macrophyte culverts, can camples: stra camples: stra to stream pro- tion where	Water Supply Wa High Quality Wat Nutrient Sensitive CAMA Area of El in the assessment a otes/Sketch" section dal Marsh Streams usence is severely a es or ponded water useways that const aightening, modifica ofile (examples: ch appropriate channe has currently rec	ers/Outstanding a Waters hvironmental Col area. <u>n or attached?</u> <u>or attached?</u>)))))))))))))))))))	Resource Waters ncern (AEC) Yes No Yes No Yes No Yes No Yes debris jams, How culvert). ting, existing damming, t reformed from any of les of instability include

Streamside Area Interaction - streamside area metric 6

Consider for the Left Bank (LB) and the Right Bank (RB).

Little or no evidence of conditions that adversely affect reference interaction

Moderate evidence of conditions (examples: berms, levees, down-cutting, aggradation, dredging) that adversely affect reference interaction (examples: limited streamside area access, disruption of flood flows through streamside area, leaky or intermittent bulkheads, causeways with floodplain constriction, minor ditching [including mosquito ditching])

Extensive evidence of conditions that adversely affect reference interaction (little to no floodplain/intertidal zone access [examples: causeways with floodplain and channel constriction, bulkheads, retaining walls, fill, stream incision, disruption of flood flows through streamside area] or too much floodplain/intertidal zone access [examples: impoundments, intensive mosquito ditching)) or floodplain/intertidal zone unnaturally absent or assessment reach is a man-made feature on an interstream divide

Water Quality Stressors – assessment reach/intertidal zone metric 7.

Check all that apply.

Discolored water in stream or intertidal zone (milky white, blue, unnatural water discoloration, oil sheen, stream foam)

- Excessive sedimentation (burying of stream features or intertidal zone) □в
 - Noticeable evidence of pollutant discharges entering the assessment reach and causing a water quality problem
- Odor (not including natural sulfide odors)
- Current published or collected data indicating degraded water quality in the assessment reach. Cite source in "Notes" section. ΠE
- Livestock with access to stream or intertidal zone
- Excessive algae in stream or intertidal zone ПG
- Degraded marsh vegetation in the intertidal zone (removal, burning, regular mowing, destruction, etc.) ШΗ
 - (explain in "Notes/Sketch" section) Other:
- M٦ Little to no stressors

Recent Weather - watershed metric (skip for Tidal Marsh Streams)

For Size 1 or 2 streams, D1 drought or higher is considered a drought; for Size 3 or 4 streams, D2 drought or higher is considered a drought.

- Drought conditions and no rainfall or rainfall not exceeding 1 inch within the last 48 hours
- Drought conditions and rainfall exceeding 1 inch within the last 48 hours ПВ
- No drought conditions MC
- 9. Large or Dangerous Stream assessment reach metric

Yes Mo Is stream too large or dangerous to assess? If Yes, skip to Metric 13 (Streamside Area Ground Surface Condition).

10. Naturel In-stream Habitat Types - assessment reach metric

□No Yes

Degraded in-stream habitat over majority of the assessment reach (examples of stressors include excessive sedimentation, mining, excavation, in-stream hardening [for example, rip-rap], recent dredging, and snagging) (evaluate for Size 4 Coastal Plain streams only, then skip to Metric 12)

ĒG

٦ı

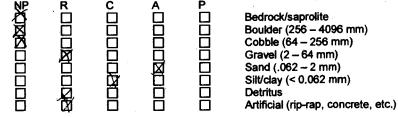
Submerged aquatic vegetation

5% vertical bank along the marsh

Low-tide refugia (pools)

Sand bottom

Little or no habitat


Check for Tidal Marsh Streams Only

10b. Check all that occur (occurs if > 5% coverage of assessment reach) (skip for Size 4 Coastal Plain streams) 5% oysters or other natural hard bottoms

- Multiple aquatic macrophytes and aquatic mosses **MA**
- (including liverworts, lichens, and algal mats) Multiple sticks and/or leaf packs and/or emergent ₩в
 - vegetation
- Multiple snags and logs (including lap trees) 5% undercut banks and/or root mats and/or roots
 - in banks extend to the normal wetted perimeter
- Little or no habitat

11. Bedform and Substrate – assessment reach metric (skip for Size 4 Coastal Plain streams and Tidal Marsh Streams)

- No Is assessment reach in a natural sand-bed stream? (skip for Coastal Plain streams) 11a. 🛛 Yes
- 11b. Bedform evaluated. Check the appropriate box(es).
 - **D**A Riffle-run section (evaluate 11c)
 - Pool-glide section (evaluate 11d)
 - П́в □с Natural bedform absent (skip to Metric 12, Aquatic Life)
- 11c. In riffle sections, check all that occur below the normal wetted perimeter of the assessment reach whether or not submerged. Check at least one box in each row. Not Present (NP) = absent, Rare (R) = present but ≤ 10%, Common (C) = > 10-40%, Abundant (A) = > 40-70%, Predominant (P) = > 70%. Cumulative percentages should not exceed 100% for each assessment reach.

Are pools filled with sediment? 11d.
UYes DINO

UTHOUR

12. Aquatic Life - assessment reach metric (skip for Tidal Marsh Streams) Was an in-stream aquatic life assessment performed as described in the User Manual? 12a. 🛛 Yes 🗌 No If No, select one of the following reasons and skip to Metric 13. INo Water Other: 12b. Yes Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13. Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. >1 Adult froas Aquatic reptiles Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) Beetles (including water pennies) Caddisfly larvae (Trichoptera [T]) Asian clam (Corbicula) Crustacean (isopod/amphipod/crayfish/shrimp) Damselfly and dragonfly larvae Dipterans (true flies) Mayfly larvae (Ephemeroptera [E]) Megaloptera (alderfly, fishfly, dobsonfly larvae) Midges/mosquito larvae Mosquito fish (Gambusia) or mud minnows (Umbra pygmaea) Mussels/Clams (not Corbicula) Other fish Salamanders/tadpoles Snails Stonefly larvae (Plecoptera [P]) Tipulid larvae (Cranefly) Worms/leeches 13. Streamside Area Ground Surface Condition - streamside area metric (skip for Tidal Marsh Streams and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB Little or no alteration to water storage capacity over a majority of the streamside area ØΒ ØВ Moderate alteration to water storage capacity over a majority of the streamside area. Severe alteration to water storage capacity over a majority of the streamside area (examples: ditches, fill, soil compaction, livestock disturbance, buildings, man-made levees, drainage pipes) 14. Streamside Area Water Storage - streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area. LB RB Majority of streamside area with depressions able to pond water ≥ 6 inches deep Majority of streamside area with depressions able to pond water 3 to 6 inches deep □в □в Æc ₩C 2 Majority of streamside area with depressions able to pond water < 3 inches deep 15. Wetland Presence - streamside area metric (skip for Tidal Marsh Streams) Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetted perimeter of assessment reach. LB RB Ø۲ Are wetlands present in the streamside area? ΠN 16. Baseflow Contributors - assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) Check all contributors within the assessment reach or within view of <u>and</u> draining to the assessment reach. \$ Ponds (include wet detention basins; do not include sediment basins or dry detention basins) □в Obstruction that passes some flow during low-flow periods affecting assessment reach (ex: beaver dam, bottom-release dam) ٨D Evidence of bank seepage or sweating (iron oxidizing bacteria in water indicates seepage) Æ Stream bed or bank soil reduced (dig through deposited sediment if present) None of the above 17. Baseflow Detractors - assessment area metric (skip for Tidal Marsh Streams) Check all that apply. Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) □в Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) Urban stream (≥ 24% impervious surface for watershed) ØО Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach ĒΕ Assessment reach relocated to valley edge ΠF None of the above 18. Shading – assessment reach metric (skip for Tidal Marsh Streams) Consider aspect. Consider "leaf-on" condition. Stream shading is appropriate for the stream category (may include gaps associated with natural processes) Д₿ Degraded (example: scattered trees) Xc Stream shading is gone or largely absent

TI Journel

19. Buffer Width - streamside area metric (skip for Tidal Marsh Streams)

Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break.

Vegetated	Wooded	
LB RB	LB RB	
MA XIA		≥ 100 feet wi
	🗍 В 🗍 В	From 50 to <
		From 30 to <
		From 10 to <

- de or extends to the edge of the watershed 100 feet wide
- 50 feet wide
- From 10 to < 30 feet wide
- ME ME < 10 feet wide or no trees

20. Buffer Structure - streamside area metric (skip for Tidal Marsh Streams)

Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width).

LB	RB		
		Mature	forest

LB

⊡в

BC

ΠE

- Non-mature woody vegetation or modified vegetation structure □в
- **N**C Herbaceous vegetation with or without a strip of trees < 10 feet wide
- Maintained shrubs DD
 - ΠE Little or no vegetation

21. Buffer Stressors - streamside area metric (skip for Tidal Marsh Streams)

Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet).

If none of the following stressors occurs on either bank, check here and skip to Metric 22:

Abuts	< 30 feet	30-50 feet

LB RB	LB RB	LB RB
LB RB KIA KAA	MA MA	XA ZA
Пв Пв	LB RB ⊠A ⊠A □B ⊡B	ГВ ⊡В
LB RB TA ⊠A □B □B □C □C		

Row crops Maintained turf Pasture (no livestock)/commercial horticulture Pasture (active livestock use)

22. Stem Density - streamside area metric (skip for Tidal Marsh Streams)

Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width).

LB	RB
MB	

Medium to high stem density

Low stem density <u>⊠</u>c जिट

No wooded riparian buffer or predominantly herbaceous species or bare ground

23. Continuity of Vegetated Buffer - streamside area metric (skip for Tidal Marsh Streams)

Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. RB

LB Ø٨

ПВ

- ØA The total length of buffer breaks is < 25 percent. The total length of buffer breaks is between 25 and 50 percent.
- ⊡в Пc The total length of buffer breaks is > 50 percent.
- 24. Vegetative Composition First 100 feet of streamside area metric (skip for Tidal Marsh Streams)

Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat.

LB	RB	
□A		Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species,
	_	with non-native invasive species absent or sparse.
⊡в	⊟в	Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native
—		species. This may include communities of weedy native species that develop after clear-cutting or clearing or
		communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or
		communities missing understory but retaining canopy trees.
хс	ĭ⊠íc	Vegetation is severally disturbed in terms of species diversity or proportions. Mature canopy is absent or communities
μų		with non-native invasive species dominant over a large portion of expected strata or communities composed of planted
		stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation.
		stands of non-characteristic spaces of communities inappropriately composed of a single spaces of the regeneration

25. Conductivity - assessment reach metric (skip for all Coastal Plain streams)

25a. Yes No Was conductivity measurement recorded?

25b.	Check the box □A < 46	corresponding to the B 46 to < 67	ment (units of microsieme)	ns per centimeter). ∏E ≥ 230

Notes/Sketch:

NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Banner Farms - UT1 Lower	Date of Evaluation	12/18/2018
Stream Category Ma2	Assessor Name/Organization	M. Caddell
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		YES
Additional stream information/supplementary measurements included (Y/N)		NO
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	MEDIUM	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

NC SAM FIELD ASSESSMENT FORM

UTZ-

	Accompanies User Manual Version 2.1
	USACE AID #: NCDWR #
	INSTRUCTIONS: Attach a sketch of the assessment area and photographs. Attach a copy of the USGS 7.5-minute topographic
	quadrangle, and circle the location of the stream reach under evaluation. If multiple stream reaches will be evaluated on the same property, identify and number all reaches on the attached map, and include a separate form for each reach. See the NC SAM User Manual for detailed descriptions and explanations of requested information. Record in the "Notes" section if supplementary measurements were performed. See the NC SAM User Manual for examples of additional measurements that may be relevant.
	NOTE EVIDENCE OF STRESSORS AFFECTING THE ASSESSMENT AREA (do not need to be within the assessment area).
	PROJECT/SITE INFORMATION: 1. Project name (if any): <u>Banner Farms</u> 2. Date of evaluation: 12/18/2018
	3. Applicant/owner name: <u>Wildlands</u> 4. Assessor name/organization: <u>Mildlands</u>
	5. County: However Sor) 6. Nearest named water body
	7. River basin: <u>French Broad</u> on USGS 7.5-minute quad: French Broad Qiver
	8. Site coordinates (decimal degrees, at lower end of assessment reach): 35,35098, -82,55527
ĺ	9. Site number (show on attached map): U++2 10. Length of assessment reach evaluated (feet): 10. Site number (show on attached map):
	9. Site number (show on attached map): 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 11. Channel depth from bed (in riffle, if present) to top of bank (feet): 12. Channel depth from bed (in riffle, if present) to top of bank (feet): 13. Channel depth from bed (in riffle, if present) to top of bank (feet): 14. Channel depth from bed (in riffle, if present) to top of bank (feet): 15. Length of assessment reach evaluated (feet): 16. Length of assessment reach evaluated (feet): 17. Channel depth from bed (in riffle, if present) to top of bank (feet): 18. Length of assessment reach evaluated (feet): 19. Length of assessment reach evaluated (fee
	12. Channel width at top of bank (feet): 13. Is assessment reach a swamp stream? Yes No
	14. Feature type: Derennial flow Intermittent flow Tidal Marsh Stream
	STREAM CATEGORY INFORMATION:
	15. NC SAM Zone: Mountains (M) Piedmont (P) Inner Coastal Plain (I) Outer Coastal Plain (O)
	16. Estimated geomorphic
	valley shape (skip for 🛛 🖾 a
	Tidal Marsh Stream): (more sinuous stream, flatter valley slope) (less sinuous stream, steeper valley slope)
X	17. Watershed size: (skip \Box Size 1 (< 0.1 mi ²) \Box Size 2 (0.1 to < 0.5 mi ²) \Box Size 3 (0.5 to < 5 mi ²) \Box Size 4 (\ge 5 mi ²)
	for Tidal Marsh Stream)
	ADDITIONAL INFORMATION: 18 Ware regulatory considerations evoluted 2. [] Vice This K Vice shorts that a short at the
	18. Were regulatory considerations evaluated? Yes DNo If Yes, check all that apply to the assessment area.
	□Section 10 water □Classified Trout Waters □Water Supply Watershed (□I □II □II □II □/I □V) □Essential Fish Habitat □Primary Nursery Area □High Quality Waters/Outstanding Resource Waters
	Publicly owned property INCDWR riparian buffer rule in effect INutrient Sensitive Waters
	Anadromous fish 303(d) List CAMA Area of Environmental Concern (AEC)
	Documented presence of a federal and/or state listed protected species within the assessment area.
	List species:
	Designated Critical Habitat (list species)
	19. Are additional stream information/supplementary measurements included in "Notes/Sketch" section or attached?
	1. Channel Water – assessment reach metric (skip for Size 1 streams and Tidal Marsh Streams)
	A Water throughout assessment reach,
	B No flow, water in pools only.
	C No water in assessment reach.
	2. Evidence of Flow Restriction – assessment reach metric
-	At least 10% of assessment reach in-stream habitat or riffle-pool sequence is severely affected by a flow restriction or fill to the
	point of obstructing flow or a channel choked with aquatic macrophytes or ponded water or impoundment on flood or ebb within
	the assessment reach (examples: undersized or perched culverts, causeways that constrict the channel, tidal gates, debris jams,
	beaver dams). B Not A
	3. Feature Pattern – assessment reach metric
	☑A A majority of the assessment reach has altered pattern (examples: straightening, modification above or below culvert). □B Not A
•	4. Feature Longitudinal Profile – assessment reach metric
	Majority of assessment reach has a substantially altered stream profile (examples: channel down-cutting, existing damming, over widening, active approaching, and excavation where appropriate channel applies and excavation where appropriate channel down-cutting, existing damming,
	over widening, active aggradation, dredging, and excavation where appropriate channel profile has not reformed from any of these disturbances).
	B Not A
•	 Signs of Active Instability – assessment reach metric Consider only current instability, not past events from which the stream has currently recovered. Examples of instability include
	active bank failure, active channel down-cutting (head-cut), active widening, and artificial hardening (such as concrete, gabion, rip-rap).
	$\Box A$ < 10% of channel unstable
	B 10 to 25% of channel unstable
	C > 25% of channel unstable

6.					nd the Right				
	LB	RB							
	□ A Kį́B	∏A ⊠B	Moder refere	rate eviden nce interac	ce of conditio tion (example	es: limited streams	ns, levee: side area podplain c	s, down-c access, (constrictio	utting, aggradation, dredging) that adversely affect disruption of flood flows through streamside area, n. minor ditching [including mosquito ditching])
		□c	(exam disrup impou	ples: cau otion of flo indments, ii	seways with ood flows th ntensive mos	floodplain and ch	annel col areal or	nstriction, too mu	raction (little to no floodplain/intertidal zone access bulkheads, retaining walls, fill, stream incision, ch floodplain/intertidal zone access [examples: zone unnaturally absent <u>or</u> assessment reach is a
7.	Water	Quality S	Stressors	s – assessi	ment reach/i	ntertidal zone met	ric		
		all that a Discol Exces Notice	apply. ored wate <u>sive</u> sedi able evid	er in stream mentation (I ience of pol	or intertidal : burying of stra lutant dischar	zone (milky white, b eam features or inte rges entering the as	lue, unnat	e)	r discoloration, oil sheen, stream foam) <u>d</u> causing a water quality problem
		Odor (Currer Liveste	not inclue nt publish ock with a	ding natural ed or collec access to st	sulfide odors ted data indic tream or inter	i) cating degraded wa tidal zone			sessment reach. Cite source in "Notes" section.
		Degra Other:	ded mars	sh vegetatio	or intertidal z n in the intert (expl	one idal zone (removal, ain in "Notes/Sketc	buming, r h" section	regular me	owing, destruction, etc.)
	Ř		o no stre				1		
8.	For Siz	ze 1 or 2	streams	, D1 droug	ht or higher		ought; for		4 streams, D2 drought or higher is considered a
		Droug	ht conditi ht conditi ought cor	ions <u>and</u> rai	rainfall or rai infall exceedii	nfall not exceeding ng 1 inch within the	1 inch wit last 48 ho	hin the la: iurs	st 48 nours
9.	1	or Dang QNo	erous St Is strea	ream – ass m too large	essment rea	ich metric s to assess? If Yes	, skip to I	Metric 13	(Streamside Area Ground Surface Condition).
10.				tat Types –	assessmen	t reach metric			t much (everyptics of strassors include everysive
	70a. []Yes	□No	sedimenta	tion, mining,	excavation, in-stre bastal Plain stream	am harde	ning [for	t reach (examples of stressors include excessive example, np-rap], recent dredging, and snagging) to Metric 12)
		XIA	Multiple	aquatic mad	if > 5% cove crophytes and , lichens, and	aquatic mosses	reach) (s 丣 뮏	kip for Si □F □G	ize 4 Coastal Plain streams) 5% oysters or other natural hard bottoms Submerged aquatic vegetation
	ļ	XB .	Multiple	sticks and/o	or leaf packs	and/or emergent	for Ti Streau	□н	Low-tide refugia (pools) Sand bottom
	1		vegetation Multiple	snags and I	logs (including	g lap trees)	Check for Tidal Marsh Streams Only		5% vertical bank along the marsh
		ХĮр	5% unde in banks	ercut banks	and/or root r	nats and/or roots tted perimeter	0≥	□ĸ	Little or no habitat
****					G QUESTIO	NS ARE NOT APPI	ICABLE	FOR TID	AL MARSH STREAMS************************************
			,						streams and Tidal Marsh Streams)
	11a.	ØYes		ls assessm	ent reach in a	a natural sand-bed s	stream? (s	kip for C	oastal Plain streams)
λ.	•	⊠A ⊟B ⊟C	Riffle-ru Pool-glic Natural I	n section (e le section (e bedform abs) Metric 12, Aquatic			
		Chack a	t loget r	one box in 40-70%, Pr	each row. edominant (P	Not Present (NP)	= absent.	Rare (R)	e assessment reach – whether or not submerged.) = present but \leq 10%, Common (C) = > 10-40%, hould not exceed 100% for each assessment reach.
		×	R			Bedrock/sapr			
		X				Boulder (256 Cobble (64 –		n)	
	14.	Ā				Gravel (2 - 64 Sand (.062 -			
						Silt/clay (< 0.0 Detritus			
		H	₹¥			Artificial (rip-r	ap, concre	ete, etc.)	
	11d.	∐Yes	⊠N o	Are pools f	illed with sed	iment?			

	UT2
12.	. Aquatic Life – assessment reach metric (skip for Tidal Marsh Streams) 12a. ⊠Yes ⊟No Was an in-stream aquatic life assessment performed as described in the User Manual? If No, select one of the following reasons and skip to Metric 13. ⊟No Water ⊡Other:
	12b. Yes No Are aquatic organisms present in the assessment reach (look in riffles, pools, then snags)? If Yes, check all that apply. If No, skip to Metric 13.
	1 >1 Numbers over columns refer to "individuals" for Size 1 and 2 streams and "taxa" for Size 3 and 4 streams. 1 Aduatic reptiles 1 Aquatic macrophytes and aquatic mosses (include liverworts, lichens, and algal mats) 1 Beetles (including water pennies) 1 Caddisfly larvae (Trichoptera [T]) 1 Asian clam (<i>Corbicula</i>) 2 Crustacean (isopod/amphipod/crayfish/shrimp) 2 Magealoptera (alderfly larvae 1 Megaloptera (alderfly, fishfly, dobsonfly larvae) 1 Midges/mosquito larvae 2 Mussels/Clams (not <i>Corbicula</i>) 3 Other fish 3 Salamanders/tadpoles 3 Stonefly larvae (Plecoptera [P]) 3 Stonefly larvae (Cranefly) 4 Worms/leeches
13.	Streamside Area Ground Surface Condition – streamside area metric (skip for Tidal Marsh Streams and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB). Consider storage capacity with regard to both overbank flow and upland runoff. LB RB A A Little or no alteration to water storage capacity over a majority of the streamside area XB XB C C Severe alteration to water storage capacity over a majority of the streamside area Severe alteration to water storage capacity over a majority of the streamside area C C Moderate alteration to water storage capacity over a majority of the streamside area C C
14.	Streamside Area Water Storage – streamside area metric (skip for Size 1 streams, Tidal Marsh Streams, and B valley types) Consider for the Left Bank (LB) and the Right Bank (RB) of the streamside area. LB RB □A □A □B □B Majority of streamside area with depressions able to pond water 3 to 6 inches deep ☑C ☑C ☑C ☑C
15.	Wetland Presence - streamside area metric (skip for Tidal Marsh Streams) Consider for the Left Bank (LB) and the Right Bank (RB). Do not consider wetlands outside of the streamside area or within the normal wetlad perimeter of assessment reach. LB RB M MY Are wetlands present in the streamside area?
16. 太	Baseflow Contributors – assessment reach metric (skip for Size 4 streams and Tidal Marsh Streams) Check all contributors within the assessment reach or within view of and draining to the assessment reach. Image: A streams and/or springs (jurisdictional discharges) Image: B Ponds (include wet detention basins; do not include sediment basins or dry detention basins) Image: C Obstruction that passes some flow during low-flow periods affecting assessment reach (ex: beaver dam, bottom-release dam) Image: D Evidence of bank seepage or sweating (iron oxidizing bacteria in water indicates seepage) Image: D Evidence of bank soil reduced (dig through deposited sediment if present) Image: D F Mone of the above
17.	Baseflow Detractors – assessment area metric (skip for Tidal Marsh Streams) Check all that apply. □A Evidence of substantial water withdrawals from the assessment reach (includes areas excavated for pump installation) □B Obstruction not passing flow during low-flow periods affecting the assessment reach (ex: watertight dam, sediment deposit) □C Urban stream (≥ 24% impervious surface for watershed) ☑D Evidence that the streamside area has been modified resulting in accelerated drainage into the assessment reach □E Assessment reach relocated to valley edge □F None of the above
	Shading – assessment reach metric (skip for Tidal Marsh Streams) Consider aspect. Consider "leaf-on" condition. A Stream shading is appropriate for the stream category (may include gaps associated with natural processes) B Degraded (example: scattered trees) X Stream shading is gone or largely absent
	ix

ر

19. Buffer Width - streamside area metric (skip for Tidal Marsh Streams) Consider "vegetated buffer" and "wooded buffer" separately for left bank (LB) and right bank (RB) starting at the top of bank out to the first break. Vegetated Wooded LB RB, LB RB ≥ 100 feet wide or extends to the edge of the watershed RIA From 50 to < 100 feet wide □B □C From 30 to < 50 feet wide From 10 to < 30 feet wide DD DD < 10 feet wide or no trees DE DE 20. Buffer Structure – streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Vegetated" Buffer Width). RB LB Mature forest Non-mature woody vegetation or modified vegetation structure ⊡в □в Herbaceous vegetation with or without a strip of trees < 10 feet wide ØC ØC Maintained shrubs ĒΕ Little or no vegetation 21. Buffer Stressors – streamside area metric (skip for Tidal Marsh Streams) Check all appropriate boxes for left bank (LB) and right bank (RB). Indicate if listed stressor abuts stream (Abuts), does not abut but is within 30 feet of stream (< 30 feet), or is between 30 to 50 feet of stream (30-50 feet). If none of the following stressors occurs on either bank, check here and skip to Metric 22: 30-50 feet < 30 feet Abuts RB Ļ₿ RB LB LB RB ⊠A ⊟B ДĂ XIA. ₩**Z**A Row crops KIA XIA ⊟в Maintained turf ШВ ШВ Pasture (no livestock)/commercial horticulture Pasture (active livestock use) 22. Stem Density - streamside area metric (skip for Tidal Marsh Streams) Consider for left bank (LB) and right bank (RB) for Metric 19 ("Wooded" Buffer Width). RB LB Medium to high stem density Low stem density □в No wooded nparian buffer or predominantly herbaceous species or bare ground ⊠C 23. Continuity of Vegetated Buffer - streamside area metric (skip for Tidal Marsh Streams) Consider whether vegetated buffer is continuous along stream (parallel). Breaks are areas lacking vegetation > 10 feet wide. LB RB The total length of buffer breaks is < 25 percent. XA Ø٩ ₫в The total length of buffer breaks is between 25 and 50 percent. ⊡в The total length of buffer breaks is > 50 percent. 24. Vegetative Composition - First 100 feet of streamside area metric (skip for Tidal Marsh Streams) Evaluate the dominant vegetation within 100 feet of each bank or to the edge of the watershed (whichever comes first) as it contributes to assessment reach habitat. LB RB Vegetation is close to undisturbed in species present and their proportions. Lower strata composed of native species, with non-native invasive species absent or sparse. Vegetation indicates disturbance in terms of species diversity or proportions, but is still largely composed of native □в ⊡в species. This may include communities of weedy native species that develop after clear-cutting or clearing or communities with non-native invasive species present, but not dominant, over a large portion of the expected strata or communities missing understory but retaining canopy trees. Vegetation is severely disturbed in terms of species diversity or proportions. Mature canopy is absent or communities Xic Ø¢ with non-native invasive species dominant over a large portion of expected strata or communities composed of planted stands of non-characteristic species or communities inappropriately composed of a single species or no vegetation. 25. Conductivity - assessment reach metric (skip for all Coastal Plain streams) 25a. Yes KNo Was conductivity measurement recorded? 25b. Check the box corresponding to the conductivity measurement (units of microsiemens per centimeter). □C 67 to < 79 □D 79 to < 230 □E ≥ 230 □B 46 to < 67 **□**A < 46

Notes/Sketch:

NC SAM Stream Rating Sheet Accompanies User Manual Version 2.1

Stream Site Name Banner Farms - UT2	Date of Evaluation	12/18/2018
Stream Category Ma2	/N) ns (Y/N)	M. Caddell
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		YES
Additional stream information/supplementary measurements included (Y/N)		NO
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	Intermittent
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	LOW	NCDWR Intermittent Image: Intermittent Image:
(4) Channel Stability	HIGH	
(4) Sediment Transport	LOW	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology		
(1) Water Quality		
(2) Baseflow		
(2) Streamside Area Vegetation		
(3) Upland Pollutant Filtration		
(3) Thermoregulation		
(2) Indicators of Stressors	NO	
(2) Aquatic Life Tolerance	MEDIUM HIGH LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	HIGH	
(3) Substrate	LOW	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

Date: 12/18/2018	Project/Site: B	anner Tain	Latitude: 39	53539		
Date: 12/18/2018 Evaluator: M. Caddell	County: Hen	Contraction of the second s		Longitude: -82,559 Other Banner Cree e.g. Quad Name: Reachs		
Total Points:Stream is at least intermittent $if \ge 19$ or perennial if $\ge 30^*$		nation (circle one) rmittent	Other Ban e.g. Quad Name:			
A. Geomorphology (Subtotal = 20.5)	Absent	Weak	Moderate	Stron		
1 ^{a.} Continuity of channel bed and bank	0	1	2			
2. Sinuosity of channel along thalweg	0	(1)	2			
3. In-channel structure: ex. riffle-pool, step-pool,	0		0			
ripple-pool sequence	0	1	2			
4. Particle size of stream substrate	0	1	2	$\overline{(3)}$		
5. Active/relict floodplain	0	1 .	\mathbb{C}	3		
6. Depositional bars or benches	0	1	2	3		
7. Recent alluvial deposits	0	1	(23)	3		
8. Headcuts		1	2	3		
9. Grade control	(0)	0.5	1	1.5		
10. Natural valley	0	0.5	1			
11. Second or greater order channel	Nc) = 0	(Yes:			
^a artificial ditches are not rated; see discussions in manual						
B. Hydrology (Subtotal =)						
12. Presence of Baseflow	0	1	2	3		
13. Iron oxidizing bacteria		1	2			
14. Leaf litter	1.5		0.5			
15. Sediment on plants or debris	0	0.5	1	-		
16. Organic debris lines or piles	0	0.5	1			
17. Soil-based evidence of high water table?		= 0				
C. Biology (Subtotal = (\mathcal{O}))			Not account			
18. Fibrous roots in streambed	(3)	2	1	0		
19. Rooted upland plants in streambed		2	1			
20. Macrobenthos (note diversity and abundance)	0	1	2	_		
		1	2			
21. Aquatic Mollusks			Ζ			
22. Fish		0.5				
23. Crayfish		0.5	1	82, 559 ner Cree Reach 3 3 3 3 3 3 3 3 3 3 3 3 3		
24. Amphibians	<u> </u>	0.5	1			
25. Algae	· 0	0.5	Con 12			
26. Wetland plants in streambed			3L = 1.5 ©ther = 0			
*perennial streams may also be identified using other met	· · · · · ·	I.				
Notes: 3 may Aly, I damse	14 IV ISTO	NEARY, 91	GANTIN	V, (tan		
	01	<u> </u>	4			
Sketch:						
	١					
		•	-			
	•					

NC DWQ Stream Identification Fo	orm Version 4.11		Stream Classi	fication Point	
Date: 12/17/2018		anner Farms	Latitude: 35,35356 Longitude: -82,5542		
Date: 12/18/2018 Evaluator: M. Cooldell	County: Her	rdler son			
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*35.5		nation (circle one) rmittent Perennia	Other UT 1 e.g. Quad Name:		
A. Geomorphology (Subtotal = 16)	Absent	Weak	Moderate	Streng	
1 ^a Continuity of channel bed and bank	0	1	2	(3)	
2. Sinuosity of channel along thalweg	0	(h)	2	3	
3. In-channel structure: ex. riffle-pool, step-pool,					
ripple-pool sequence	0	1	$\begin{pmatrix} 2 \end{pmatrix}$	3	
4. Particle size of stream substrate	0	Ø	2	. 3	
5. Active/relict floodplain	0	(1) ·	2	3	
6. Depositional bars or benches	0	1	(2)	3	
7. Recent alluvial deposits	0	1	T	3	
8. Headcuts	0	Ø	2	3	
9. Grade control	Q	0.5	1	1.5	
10. Natural valley	8	0.5	1	1.5	
11. Second or greater order channel	· No	$p = 0^{2}$	(Yes = 3')		
^a artificial ditches are not rated; see discussions in manua	-				
B. Hydrology (Subtotal = <u></u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>					
12. Presence of Baseflow	0	1	2	(3)	
13. Iron oxidizing bacteria	0	Ð	2	3	
14. Leaf litter	1.5	(P)	0.5	0.	
15. Sediment on plants or debris	0	0.5	Ð	1.5	
16. Organic debris lines or piles	0	0.5	1 ~	1.5	
17. Soil-based evidence of high water table?	No	o = 0	Yes		
C. Biology (Subtotal = 10)	· · · · · ·	L			
18. Fibrous roots in streambed	(\mathfrak{I})	2	1	0	
19. Rooted upland plants in streambed	3	2	1	0	
20. Macrobenthos (note diversity and abundance)	0		(2)	3	
21. Aquatic Mollusks	. (0)	1	2	3	
22. Fish	6	0.5	1	1.5	
23. Crayfish	0	0.5	0	1.5	
24. Amphibians	Ð	0.5	1	. 1.5	
25. Algae	· 0	0.5	(D)	1.5	
26. Wetland plants in streambed		FACW = 0.75; OB	L = 1.5 Other = (
*perennial streams may also be identified using other me	ethods. See p. 35 of manua		Station Construction	······································	
Notes: Dansel Fly - 10 Crayfi					
V V					
Sketch:		•			
· · · ·					

NC DWQ Stream Identification For		T in the second	Stream Classification Point 2				
Date: 1211812018	Project/Site:	annortaim					
Evaluator: M. G. ddell	County: Hen	derson	Longitude:	82.5591			
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*34.5		nation (circle one) rmittent (Perennial)					
A. Geomorphology (Subtotal = 13,5)	Absent	Weak	Latitude: $3-$ Longitude: $-$ Other $1 -$ e.g. Quad Name: Moderate 2 2 2 2 2 2 2 2 2 2 2 2 2	Strong			
1 ^a . Continuity of channel bed and bank	Q	1	2	(3)			
2. Sinuosity of channel along thalweg	Ô	1	2	3			
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0		2	3			
4. Particle size of stream substrate	0	X		2			
5. Active/relict floodplain	0	1					
6. Depositional bars or benches	0	(1)	2	· · · · · · · · · · · · · · · · · · ·			
7. Recent alluvial deposits	0	<u> </u>	67				
8. Headcuts	6	1	<u></u>				
9. Grade control		0.5					
10. Natural valley	n n n n n n n n n n n n n n n n n n n	0.5					
		= 0					
11. Second or greater order channel ^a artificial ditches are not rated; see discussions in manual		-0	(Tes-	<u> </u>			
B. Hydrology (Subtotal = 2.5)							
12. Presence of Baseflow	0	1	2	3			
13. Iron oxidizing bacteria	(0)	1	2	3			
14. Leaf litter	1.5	(I)					
15. Sediment on plants or debris	0	0.5					
16. Organic debris lines or piles	0	0.5	(1)				
17. Soil-based evidence of high water table?	No	= 0					
C. Biology (Subtotal = 11.5)	· · · · · · · · · · · · · · · · · · ·		h				
18. Fibrous roots in streambed	(3)	2	1	0			
19. Rooted upland plants in streambed	3	2	1				
20. Macrobenthos (note diversity and abundance)	0	1	2				
21. Aquatic Mollusks		1					
22. Fish	0.	0.5	1	1.5			
23. Crayfish	. O	0.5	1				
24. Amphibians	0	0.5	1				
25. Algae	. 0	0.5	6	1.5			
26. Wetland plants in streambed		FACW = 0.75; OBI	$_{-} = 1.5$ Other = 0	$ \begin{array}{c} 3 \\ 3 \\ 0 \\ 1.5 \\ -3 \\ 0 \\ 0 \\ 3 \\ -3 \\ 1.5 \\ $			
*perennial streams may also be identified using other metho	ods. See p. 35 of manual		C	$ \begin{array}{c} 1.5 \\ \hline 3 \\ \hline 3 \\ \hline 3 \\ \hline 0 \\ \hline (1.5) \\ \hline 1.5 \\ \hline 3 \\ \hline 0 \\ 0 \\ \hline 3 \\ \hline 1.5 \\ 1.5 \\ \hline 1.5 \\ 1.5 \\ \hline 1.5 \\ 1.5 \\ \hline 1.5 \\ \hline 1.5 \\ 1.5 \\ $			
Notes: 3 Salamander, 3 d Sketch:	amselflie	s, 1 dragont	Fly, ISCU	d, Iber			
			Latitude: 35 Longitude:				

Project/Site:	BannerFrim	Latitude: 34	535532
County:	enderson	Longitude:	67 5552
Stream Detern	nination (circle one)	Other Man e.g. Quad Name	drainage a Banner Creek
Absort			
	Weak		Strong
	1	\bigcirc	3
		2	3
0	\square	2	3
0	1		3
	1		3
0	1		3
0			3
(6)			3
0			3
0			1.5
in the second se	- The second sec		1.5
Contraction of the second	and the second se	Yes =	= 3
		·	
0	1		
			3
Contraction of the second s		2	3
			0
		-	1.5
			1.5
	-0	(Yes =	3
	the second se	1	0
			0
			3
Strate State State		2	3
		1	1.5
		1	1.5
		1	1.5
U		D	1.5
Soo p 35 stars	FACW = 0.75; OBL =	1.5 Other = 0	
Jee p. 35 of manual.			
	Stream Determ Ephemeral 0 3 0	Stream Determination (circle one) Ephemeral (ntermittent Perennial Absent Weak 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5 0 0.5	Other Image: Second seco

NC DWQ Stream Identification Form Version 4.11

Date: 12/18/2018	Project/Site: Bannel Farm	Latitude: 35, 35311
Evaluator: M. Cooblell	County: Henderson	Longitude: -82, 55899
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determination (circle one) Ephemeral Intermitten) Perennial	Other Thip consing into Bann e.g. Quad Name: Chelk atend of Reach 2

A. Geomorphology (Subtotal = 🔗)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0		(2)	3
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0		2	3
4. Particle size of stream substrate	0	Ð	2	3
5. Active/relict floodplain		1	2	3
6. Depositional bars or benches	0	Ð	2	3
7. Recent alluvial deposits	0	Ð	2	3
8. Headcuts	· O.	1	2	3
9. Grade control	\bigcirc	0.5	1	1.5
10. Natural valley	Ō	0.5	1	1.5
11. Second or greater order channel	N	0 = 0	Yeş =	= 3
^a artificial ditches are not rated; see discussions in manual		Constant of the other other other other other	• • • • •	,

B. Hydrology (Subtotal = \Im)

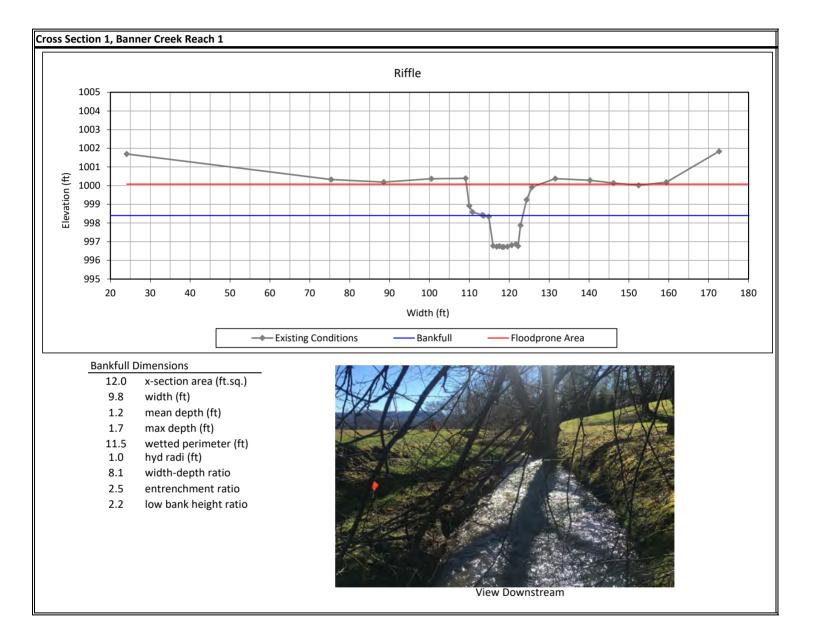
0	1	2	3
0	(1)-7	2	3
1.5	(1)	0.5	0
0	0.5	1	1.5
0	0.5	1	1.5
. No	o = 0	(Yes =	3
•		······································	- 18 A.T.
3	2	1	0
3	2	1	0
\bigcirc	1	2	3
0	1	2	3
0	0.5	· 1 ··	1.5
Ø	0.5	1	1.5
(0)	0.5	[*] 1	1.5
0	0.5	1	1.5
	FACW = 0.75; O	BL = 1.5 Other = 0	<u> </u>
	1.5 0 0 No 0 0 0 0 0 0 0 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

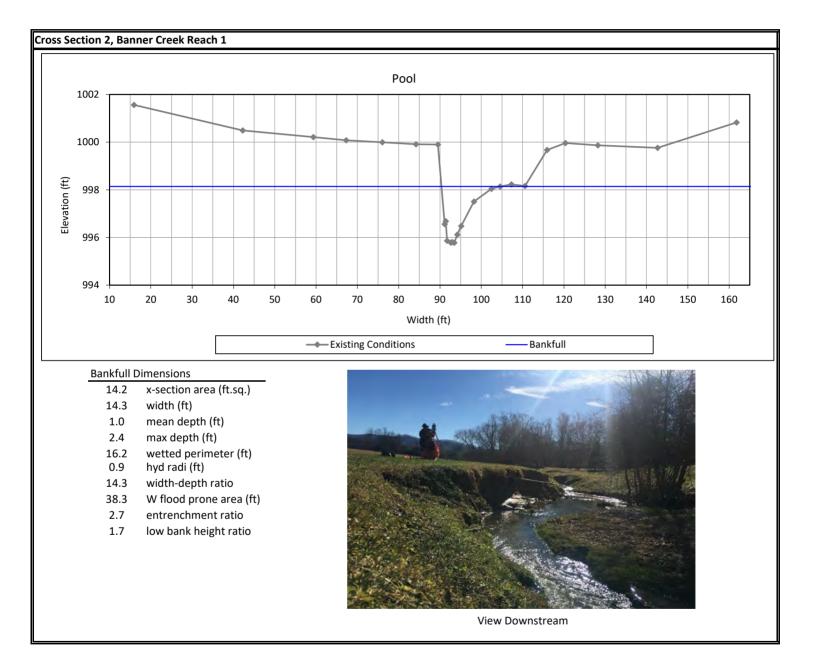
Notes: No life Found

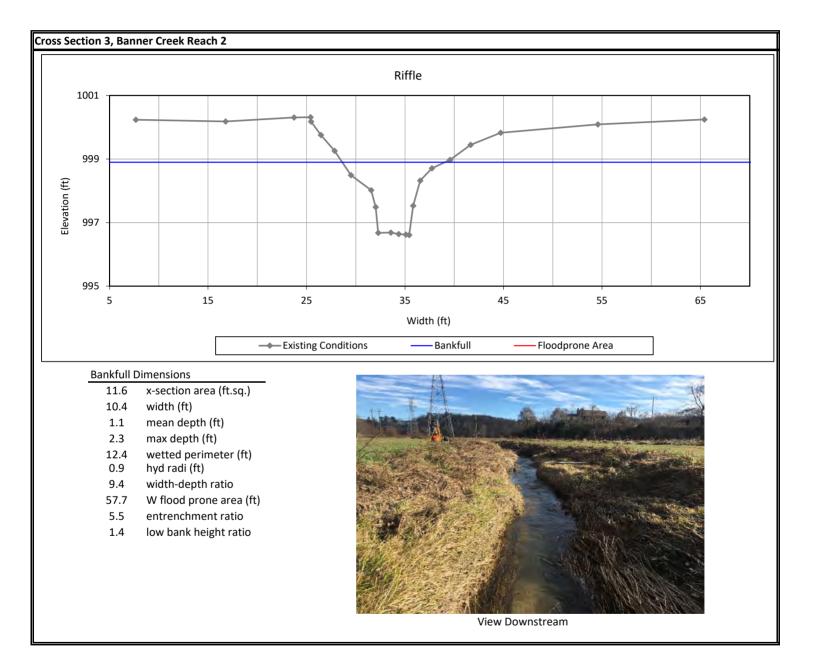
Sketch:

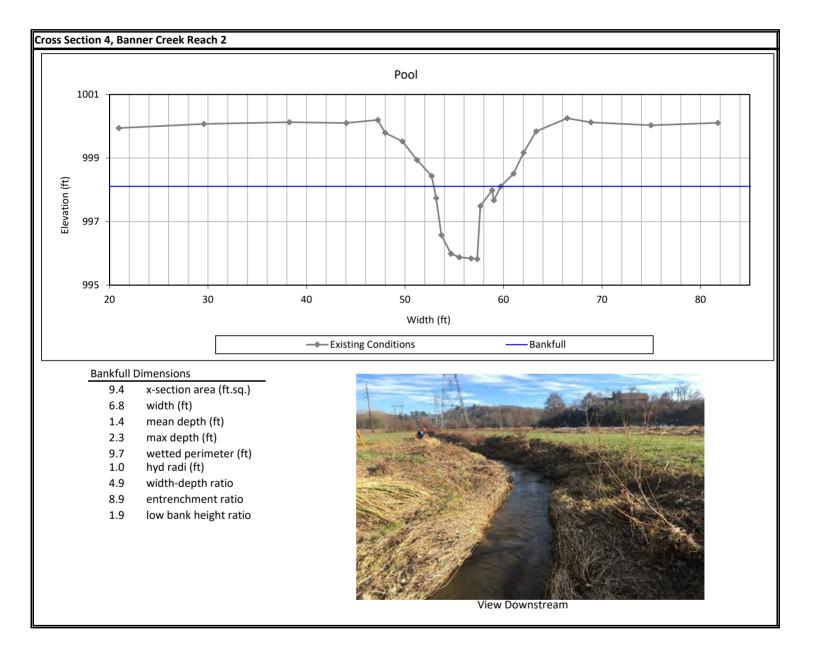
Trib Reachberge

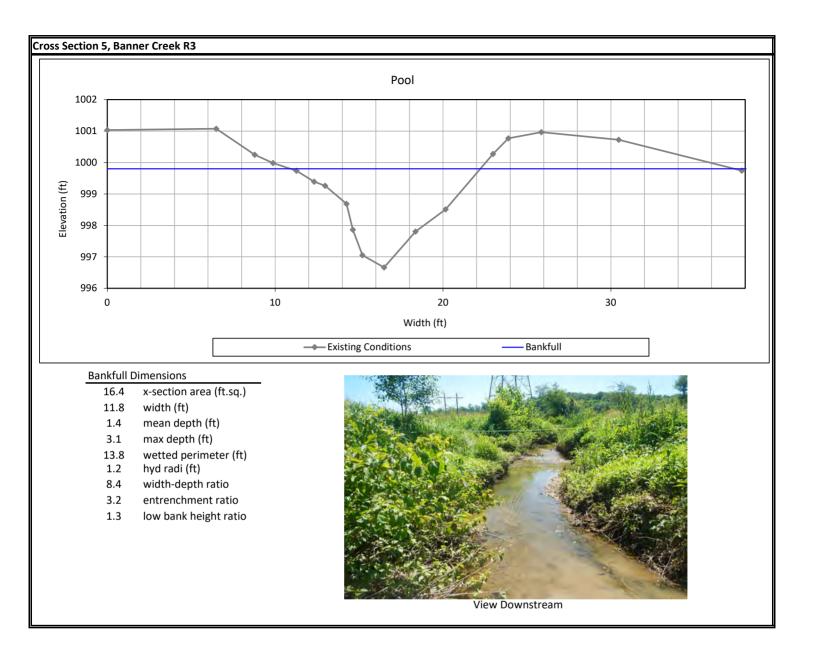
APPENDIX 6 Data, Analysis, and Supplementary Design Information

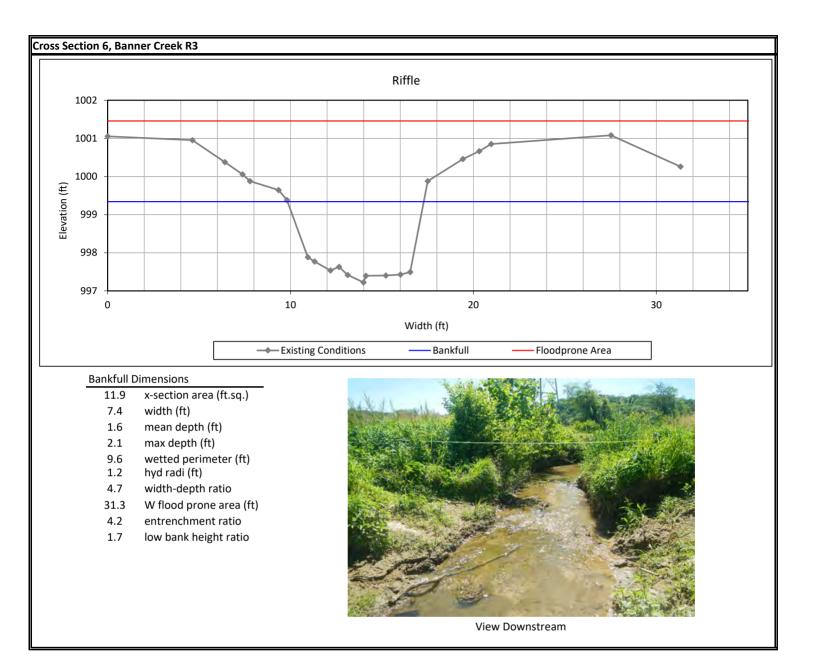

					Existing	g Condition	s Geomorph	ic Paramet	ers					
	Banner R1 Banner R2 B				Bann	anner R3 Banner R4			UT1		UT2			
Parameter			min	max	min	max	min	max	min	max	min	max	min	max
stream type			C	24	C5	5/4	C	24	(24	E/	C5	E/	C5
drainage area	DA	sq mi	0.	61	0.	66	0.	67	1.	13	0.	13	0.	30
bankfull cross- sectional area	A _{bkf}	SF	12	2.0	11	1.6	11	1.9	32	2.4	3.6	7.8	4	.1
avg velocity during bankfull event	V _{bkf}	fps	3	.4	4	.0	3	.6	1	.8	0.6	2.3	2.3	
width at bankfull	W _{bkf}	feet	9	.8	10	0.4	7	.4	19	9.4	5.2	11.7	4	.6
maximum depth at bankfull	d _{max}	feet	1	.7	2.	30	2.	10	2.	60	1.4	1.7	1	.2
mean depth at bankfull	d_{bkf}	feet	1	.2	1	1	1	.6	1	.7	0.7	0.8	0	.9
bankfull width to depth ratio	w _{bkf} /d _{bkf}		8	.2	9	.3	4	.6	11	L.4	7.5	12.9	5	.1
low bank height		feet	3	.7	3	.2	3	.6	5	.5	2.8	3.4	1	.7
bank height ratio	BHR		2	.2	1	4	1	.7	2	.1	2.0	2.1	1	.4
floodprone area width	W _{fpa}	feet	2	.5	58		3	1	23		15	24	1	.6
entrenchment ratio	ER		2	.5	5	5.6		.2	1.2		2.4	2.9	3.5	
max pool depth at bankfull	d _{pool}	feet	2	.4	2	3	3	.1	3.3		1.9		2.5	
pool depth ratio	d_{pool}/d_{bkf}		2	.0	2	.1	1	.9	1.9		2.7		2	.8
pool width at bankfull	W _{pool}	feet	14	1.3	6	.8	11	L.8	17		4.5		5.7	
pool width ratio	w _{pool} /w _{bkf}		1	.5	0	.7	1	.6	0	.9	0.9		1	.2
Bkf pool cross- sectional area	A _{pool}	SF	14	1.2	9	.4	16	5.4	35.9		4	.6	6	.2
pool area ratio	A _{pool} /A _{bkf}		1	.2	0	.8	1	1.4 1.1 1.3		.3	1	.5		
pool-pool spacing	р-р	feet	34	52	7	30	N/A ¹	N/A ¹	N/A ¹	N/A ¹	15	36	7	38
pool-pool spacing ratio	p-p/W _{bkf}		3.4	5	0.7	2.9	N/A ¹	N/A ¹	N/A ¹	N/A ¹	1.5	7	1.5	8
valley slope	S _{valley}	feet/ foot	0.0	006	0.0	005	0.0	009	0.0	004	0.0	024	0.0	004
channel slope	S _{channel}	feet/ foot	0.0	057	0.0	007	0.0	001	0.0	001	0.003		0.0	047
sinuosity	К		1.	08	1.	01	1.	00	1.	02	1.	10	1.	28
belt width meander width	W _{blt}	feet	14	30	3	18	N/A ²							
ratio	w _{blt} /w _{bkf}		1.4	3.0	0.3	1.7	N/A ²							
meander length	L _m	feet	54	130	63	106	N/A ²							
meander length ratio	L _m /w _{bkf}		5.5	13.3	6.1	10.2	N/A ²							
Linear Wavelength	LW		50	111	58	100	N/A ²							
Linear Wavelength Ratio	LW/w _{bkf}		5.1	11.3	5.6	9.6	N/A ²							
radius of curvature	R _c	feet	30	47	20	50	N/A ²							
radius of	1			1	I	1	1	1	1	1		I		1

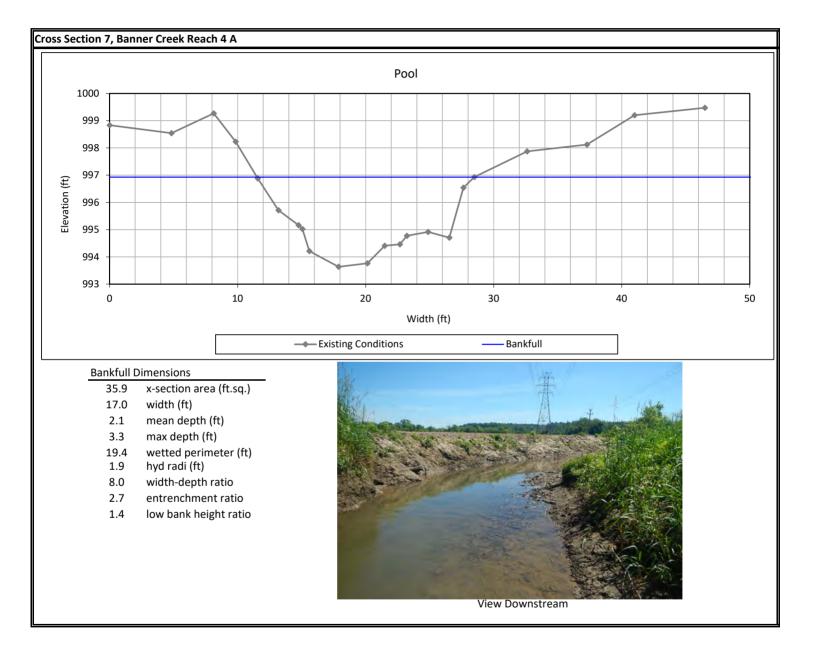

radius of	R _c / w _{bkf}	3 1	18	1 9	18	N/A ²	N/Λ^2	N/A ²					
curvature ratio	N _c / Wbkf	5.1	4.8	1.5	4.0	N/A	N/A ²	N/A	N/A	N/A	N/A	N/A	N/A

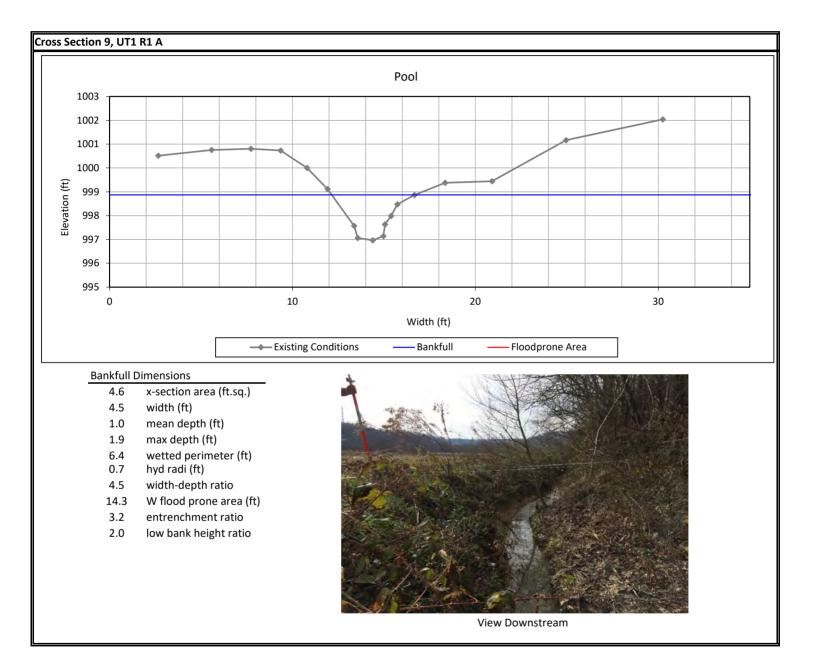

1) Banner Creek Reach 3 and 4 are inundated with fine sediments and no pool habitiat was observed along the reaches.

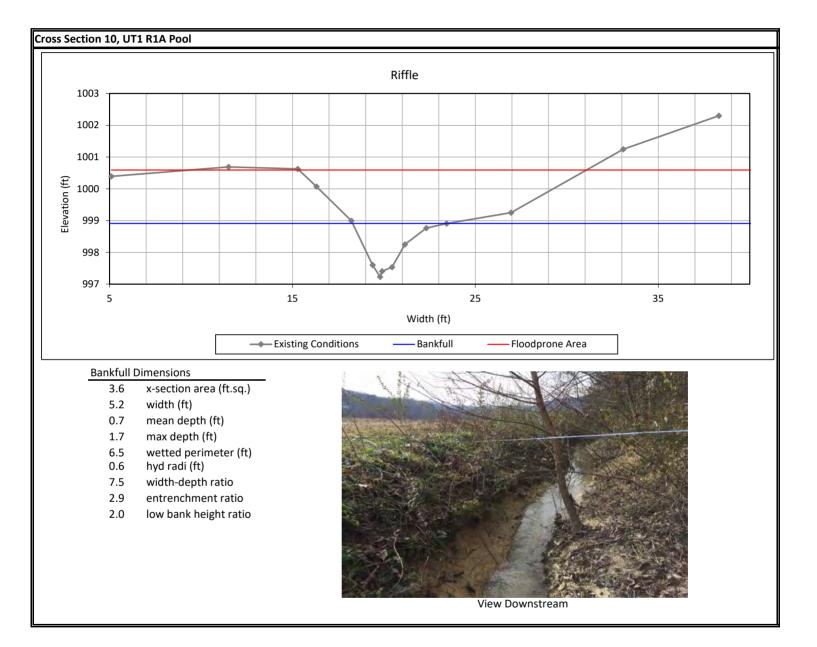

2) Banner Creek R3, 4, UT1, and UT2 are channelized with no pattern. Channel slope is based on abbreviated and representative geomorphic survey in vicinity of cross sections.

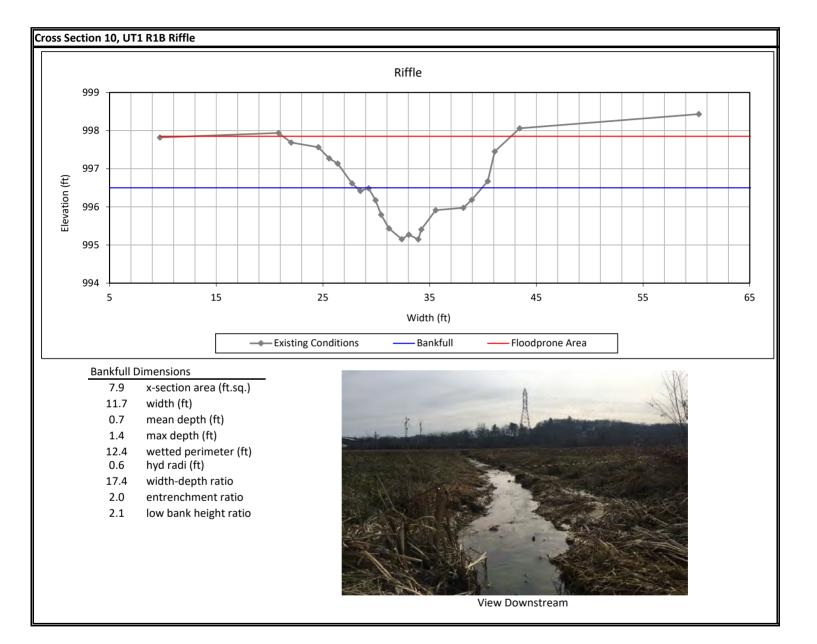

Banner Farm Mitigation Site

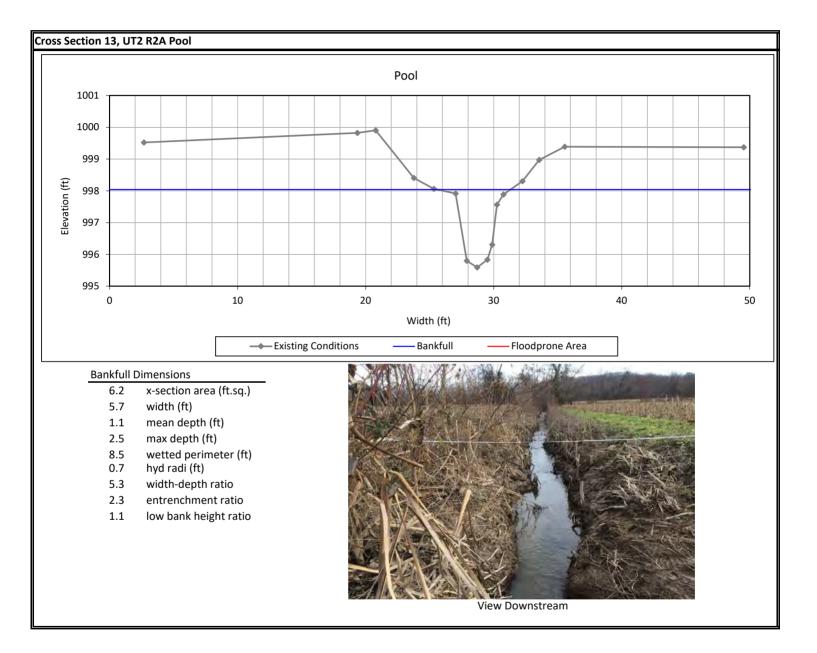


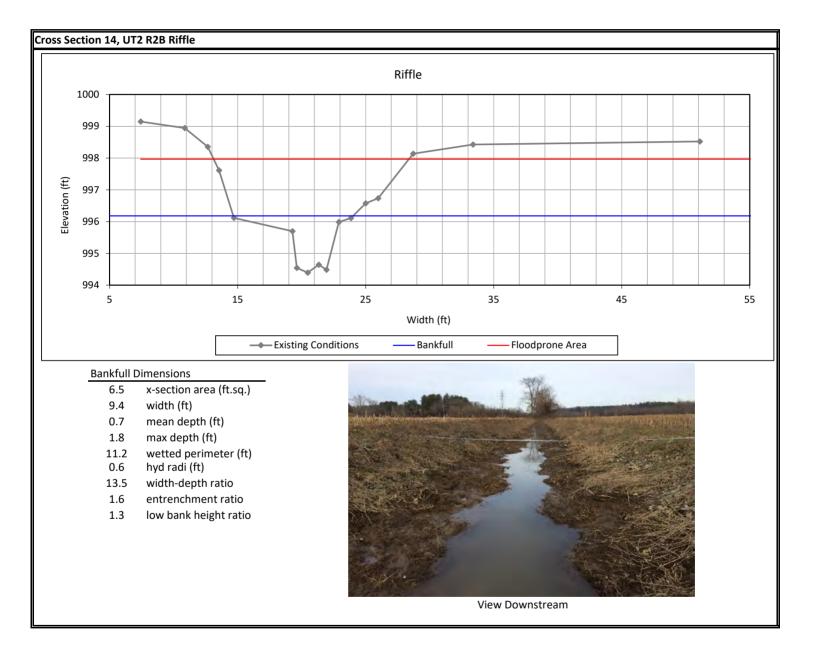


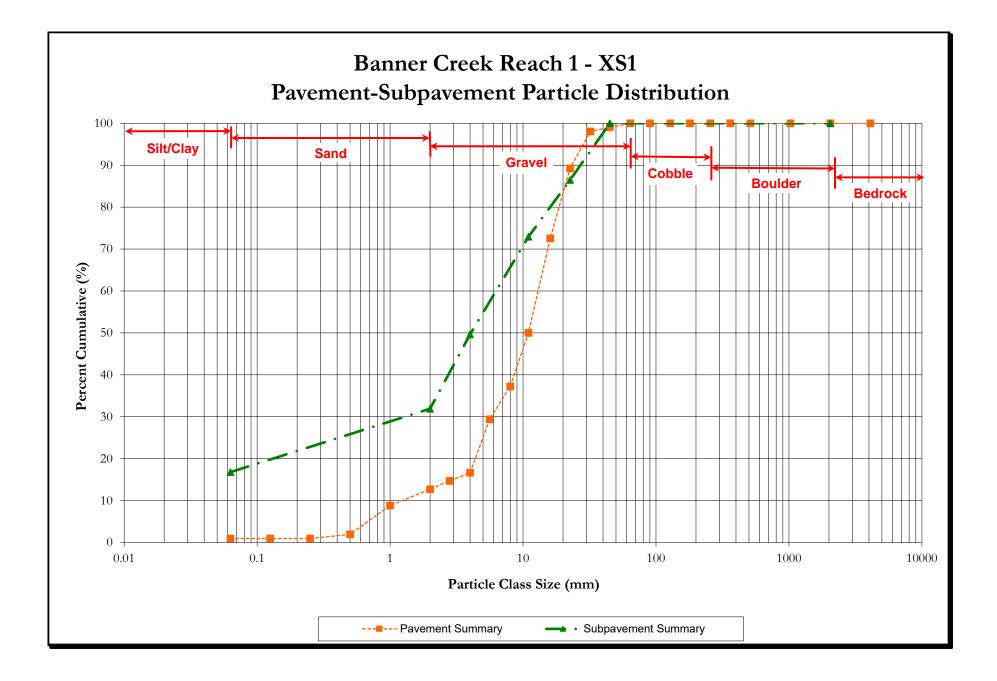


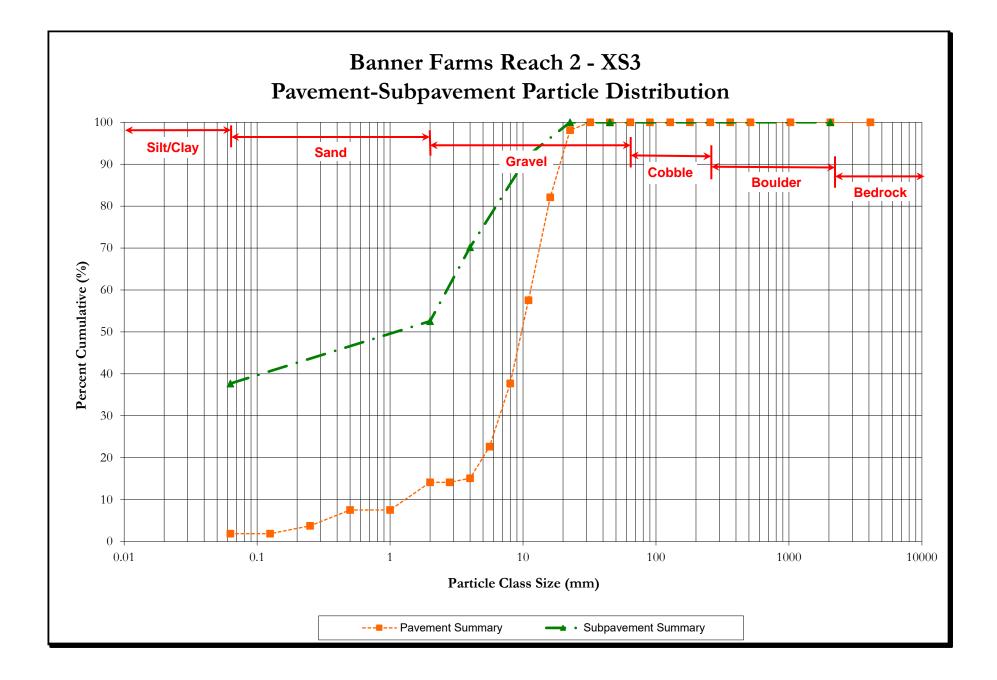


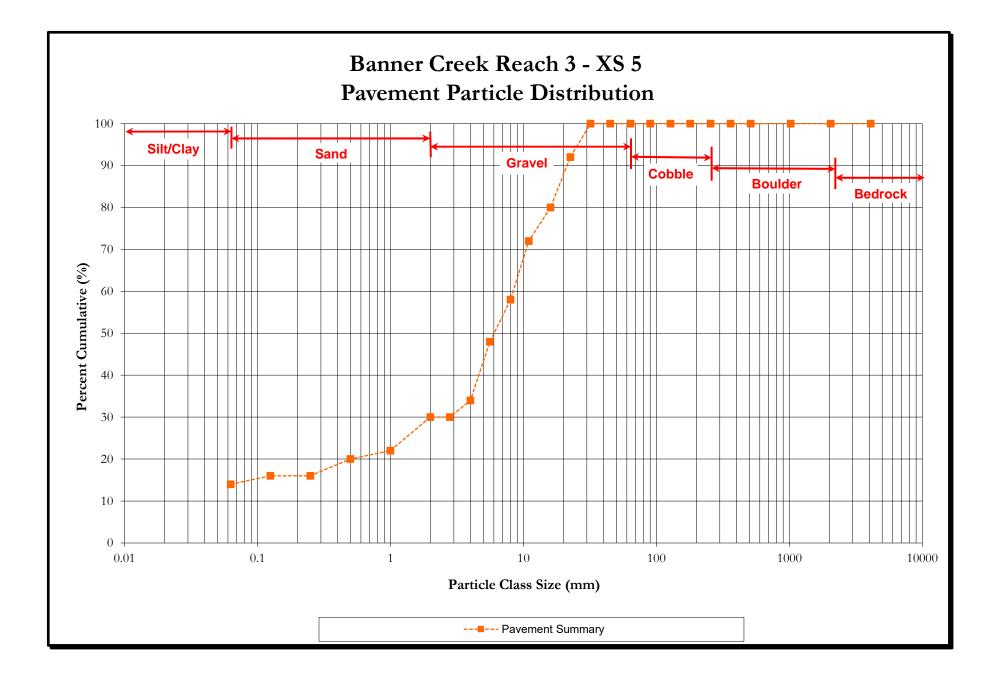


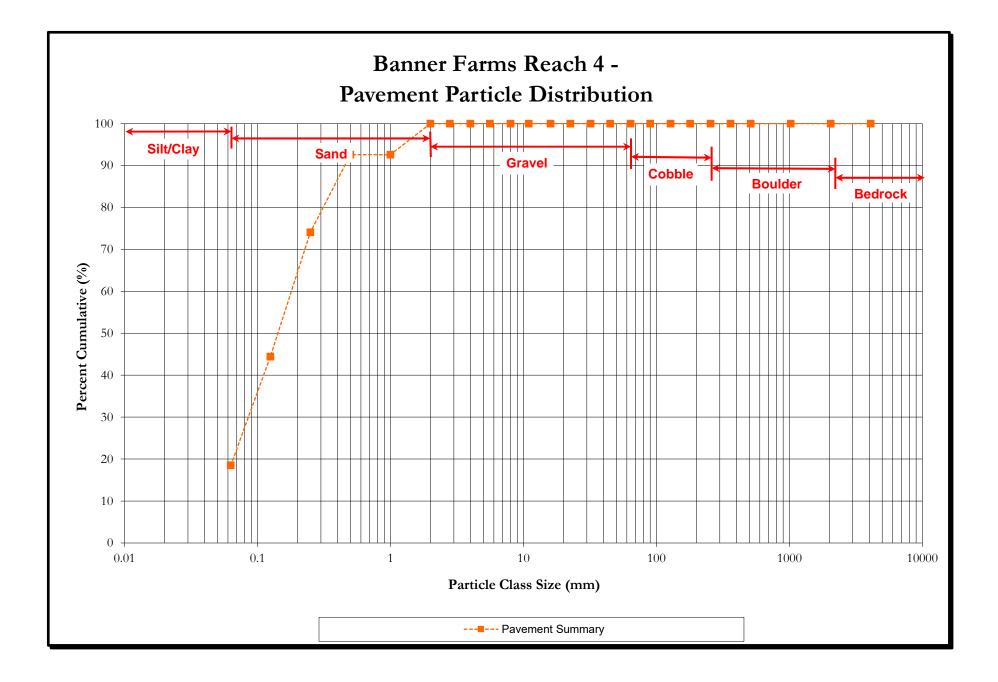


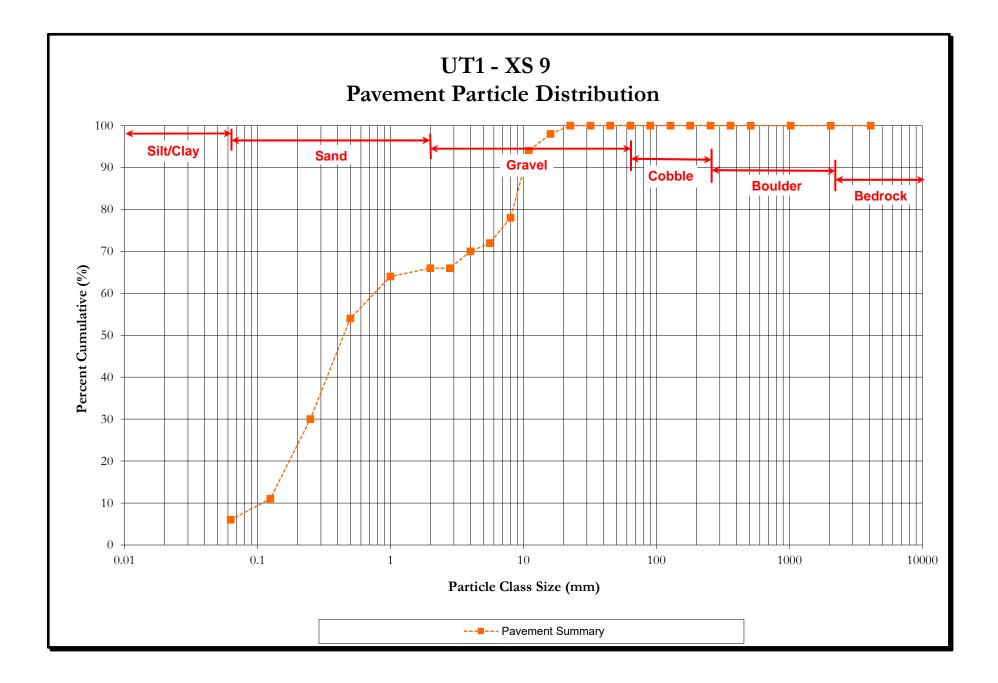


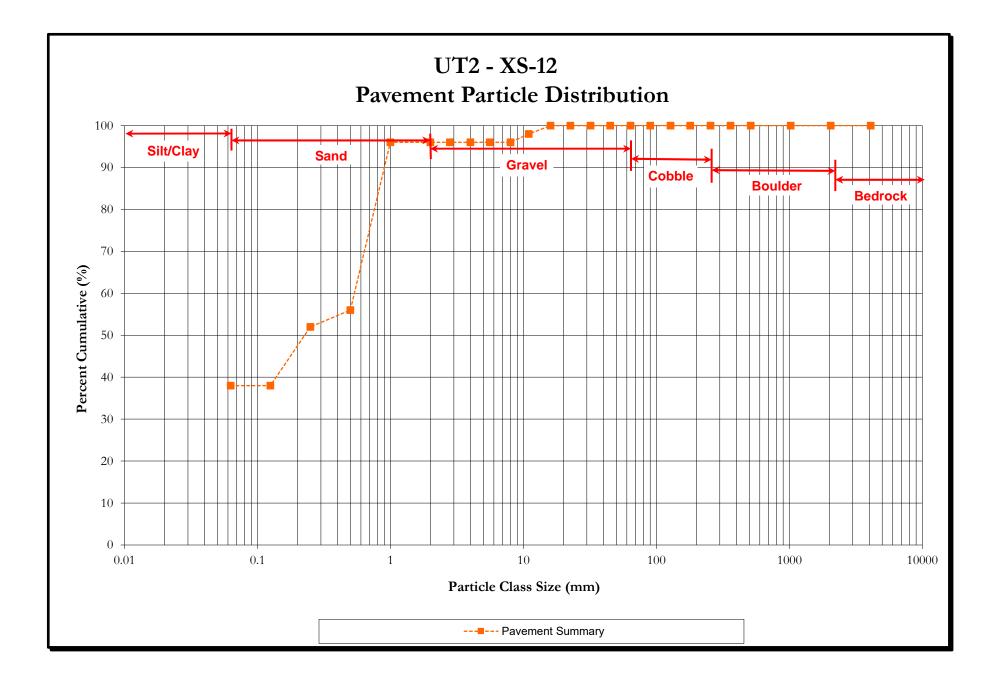


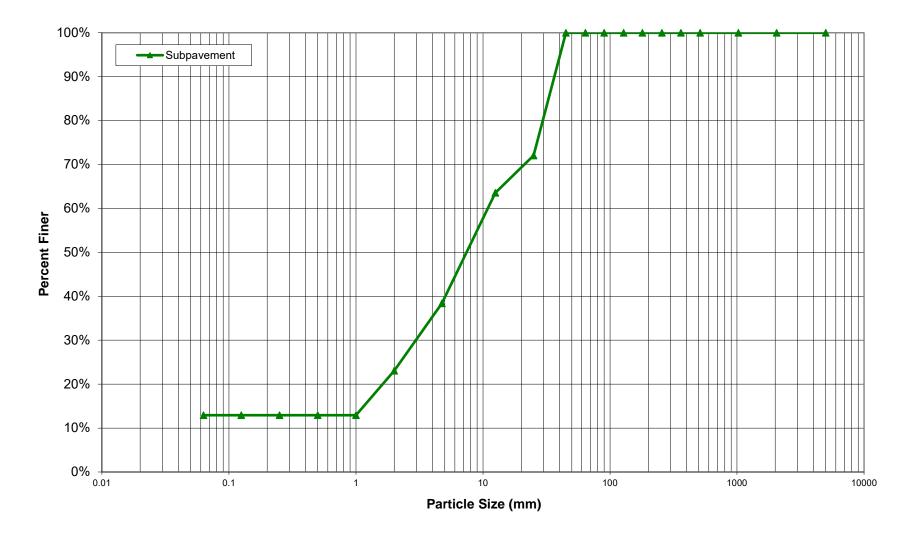


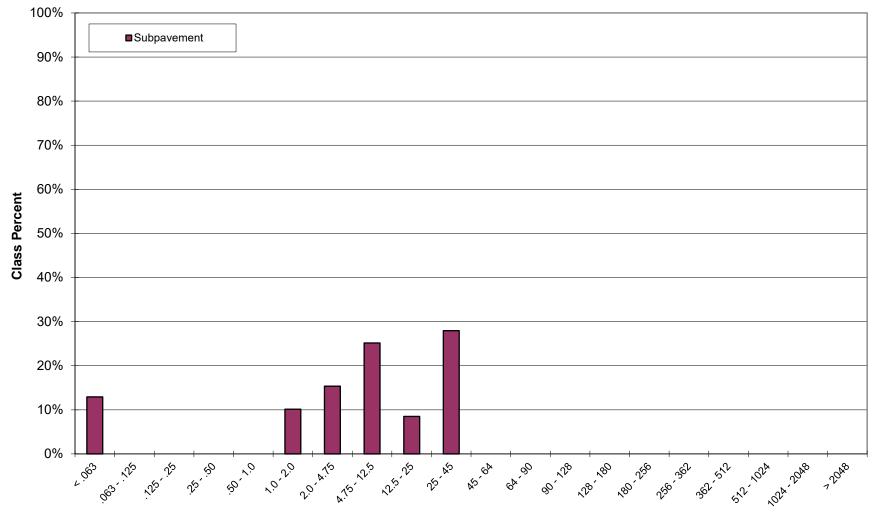




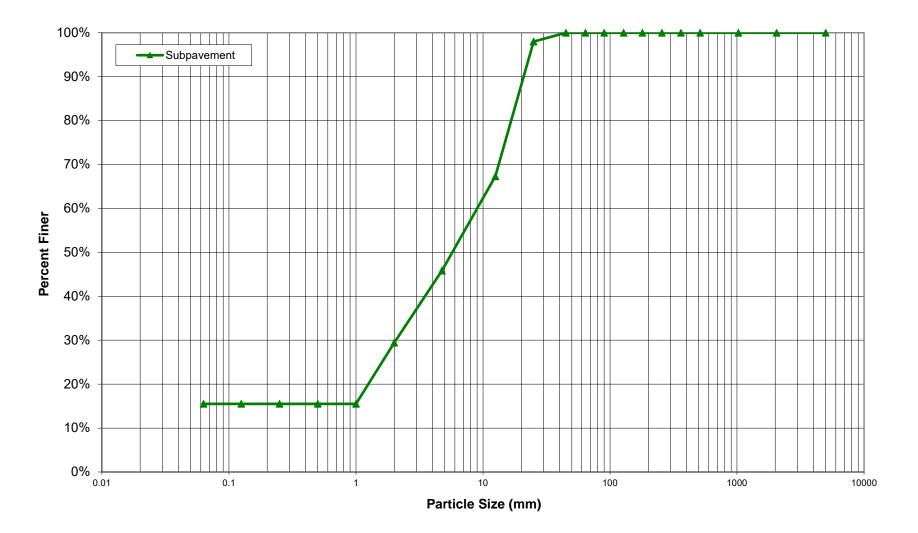




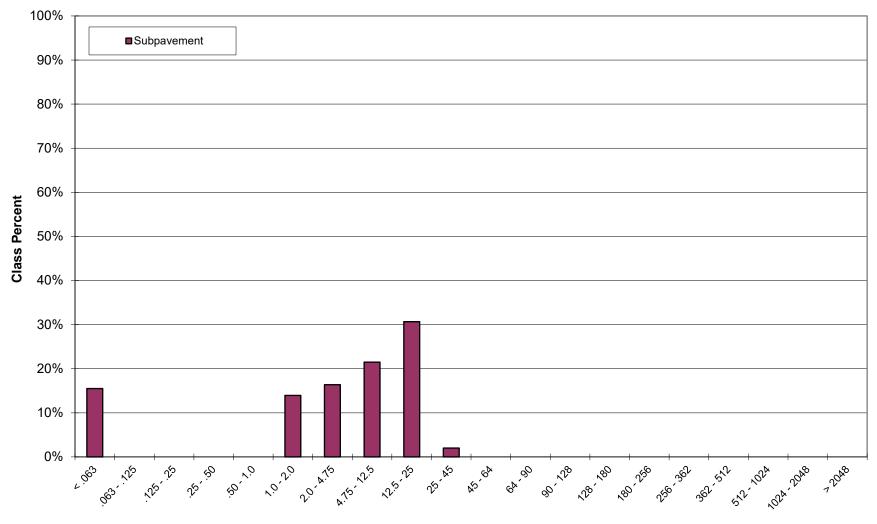




Banner Farm Mitigation Site Banner Creek Reach 1 (Bar) Subpavement Particle Size Distribution

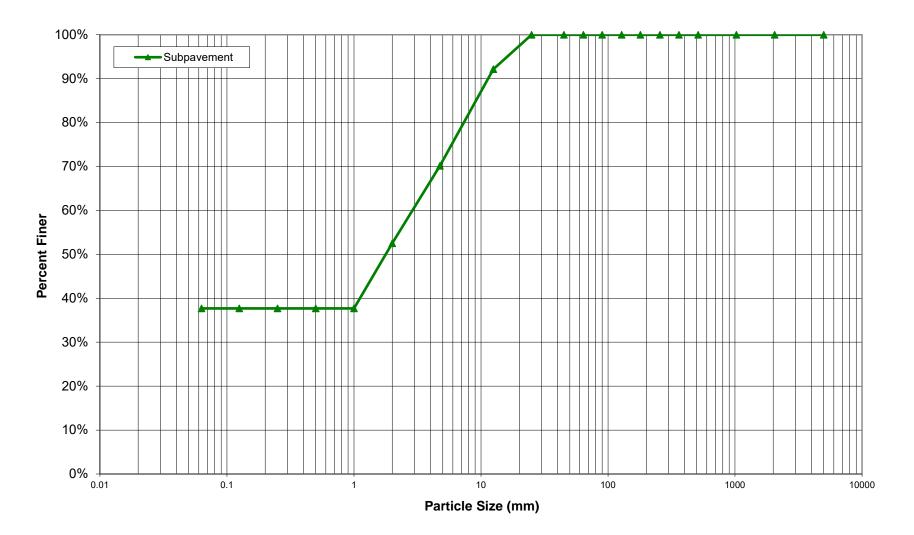


Banner Creek Reach 1 (Bar) Sieve Analysis Class Distribution

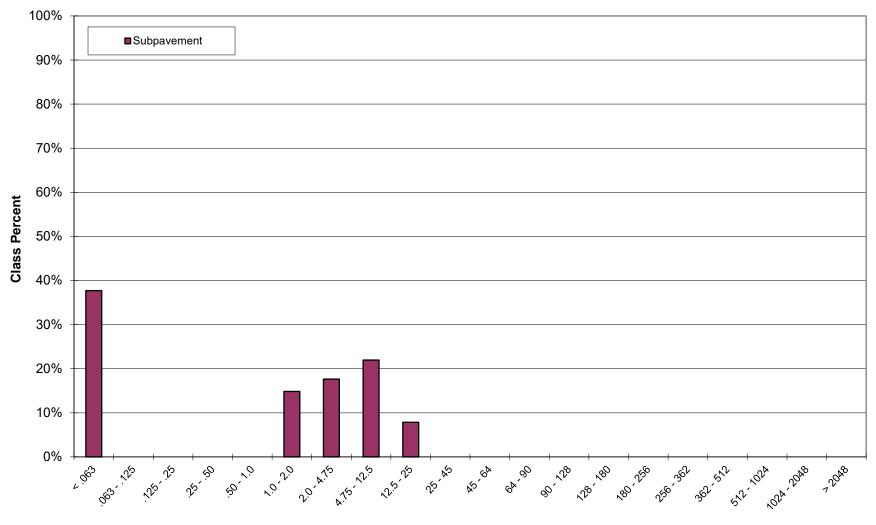


Particle Size Class (mm)

Banner Farms Mitigation Site Banner Creek Reach 1 Subpavement Particle Size Distribution



Banner Creek Reach 1 Sieve Analysis Class Distribution



Particle Size Class (mm)

Banner Farm Mitigation Site Banner Creek Reach 2 Subpavement Particle Size Distribution

Banner Creek Reach 2 Sieve Analysis Class Distribution

Particle Size Class (mm)

Table 1: Banner Reach 1 & Reach 2

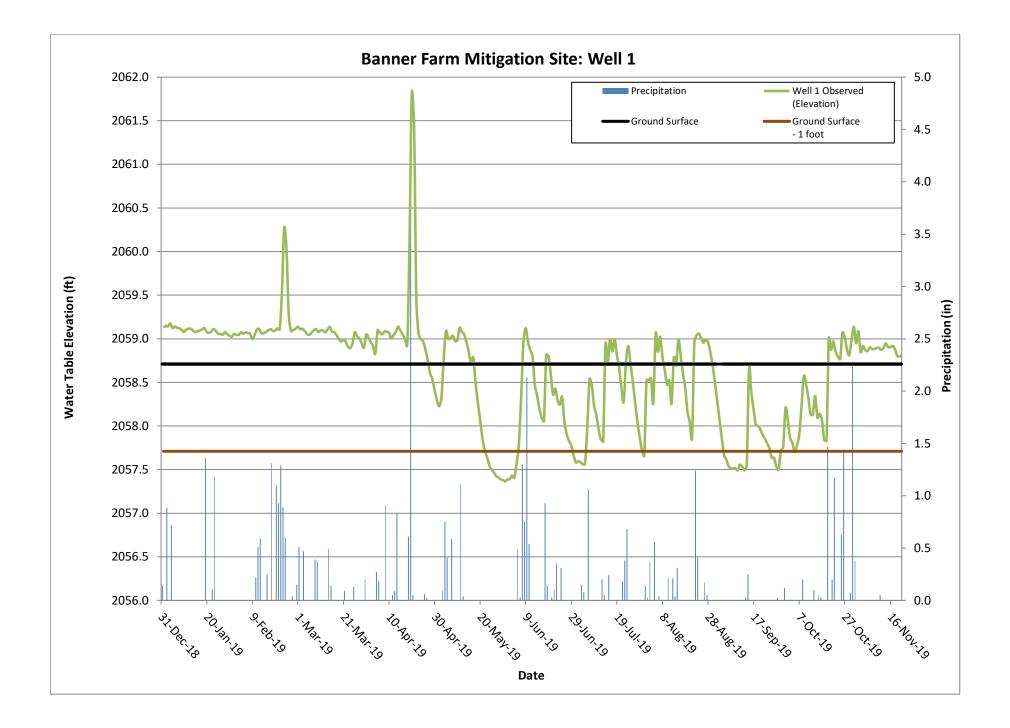
Table 1: Banner Reach 1 & Reach 2	Netetien		Desi	gned Condi	Notes	
	Notation	Units	min max			design
stream type			(24		
drainage area	DA	sq mi	0.61	- 0.66		
bankfull design discharge	Q _{bkf}	cfs	40	- 43		
Cross-Section Features						
bankfull cross-sectional area	A_{bkf}	SF	14	4.0		
side slopes	H:V	ft/ft	3	.0		
channel bottom width	$b_{ m bkf}$	feet	4	.5		
bankfull wetted perimeter	WP bkf	feet	14	4.0		
bankfull hydraulic radius	r _{bkf}	feet	1	.0		
mannings 'n'			0.0)35		
average velocity during bankfull event	V _{bkf}	fps	2	8		
width at bankfull	W _{bkf}	feet	13.5			
mean depth at bankfull	d _{bkf}	feet	1.0			
bankfull width to depth ratio	w _{bkf} /d _{bkf}		13			Design Parameters
maximum depth at bankfull	d _{max}	feet	1.2	1.8		
max depth ratio	d_{max}/d_{bkf}		1.2	1.7	1.70	Design Parameters
bank height ratio	BHR		1.0	1.0		Design Parameters
floodprone area width	W _{fpa}	feet	30	68		
entrenchment ratio	ER		2.2	5.0		
Slope						
valley slope	S _{valley}	feet/ foot	0.0	056		
channel slope	Schannel	feet/ foot	0.0043	0.0051	0.0044	
Riffle Features				-		
riffle slope	S_{riffle}	feet/ foot	0.0052	0.0173		
riffle slope ratio	$S_{riffle}/S_{channel}$		1.2	3.4		Reference Range
Pool Features						
pool slope	Spool	feet/ foot	0.0000	0.0015		
pool slope ratio	$S_{poo}l/S_{channel}$		0.00	0.30		Reference Range
pool-to-pool spacing	L _{p-p}	feet	22	88		
pool spacing ratio	L _{p-p} /w _{bkf}		1.6	6.5		Reference Range
maximum pool depth at bankfull	d _{pool}	feet	1.6	3.6		
pool depth ratio	d_{pool}/d_{bkf}		1.5	3.5		Reference Range
pool width at bankfull	W _{pool}	feet	13.5	21.6		
pool width ratio	w_{pool}/w_{bkf}		1.0	1.6		Reference Range
pool cross-sectional area at bankfull	A _{pool}	SF	15.3	34.9		
pool area ratio	A_{pool}/A_{bkf}		1.1	2.5		Design Parameters
Pattern Features						
sinuosity	K		1.10	1.30	1.20	Design Parameters
belt width	W _{blt}	feet	34	89		
meander width ratio	w _{blt} /w _{bkf}		2.5	6.6		Design Parameters
linear wavelength	LW	feet	81	162		
linear wavelength ratio	LW/w _{bkf}		6.0	12.0		Design Parameters
		£ t	101	203		
	L_m	feet	101	203		
meander length	L _m L _m /w _{bkf}	ieet	7.5	15.0		Reference Range
meander length meander length ratio radius of curvature		feet				Reference Range

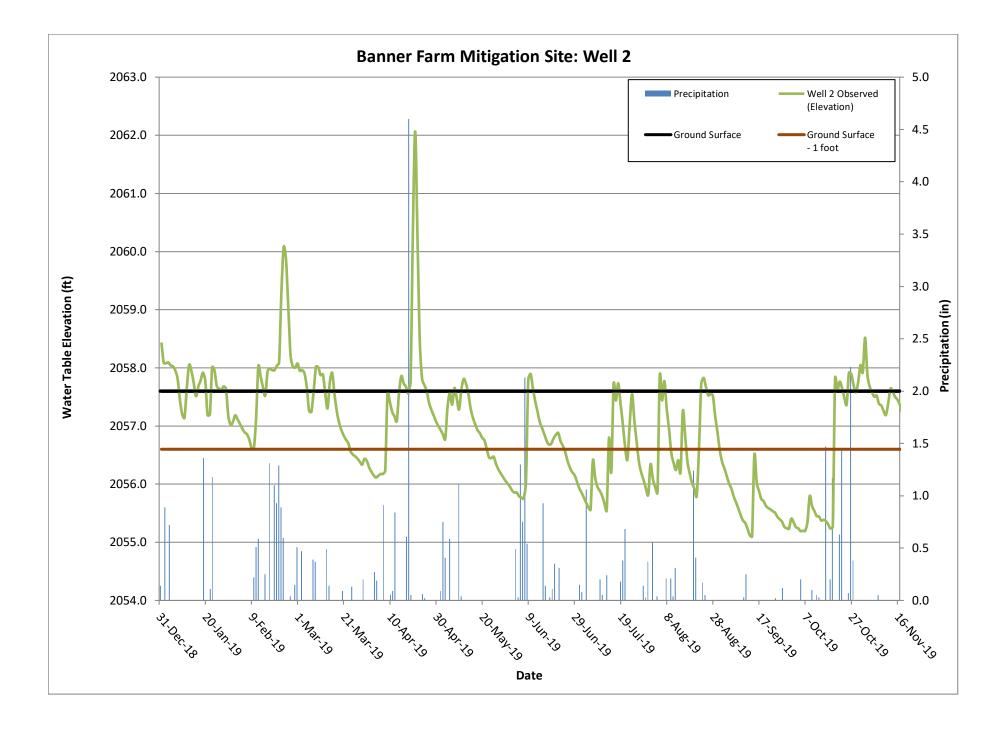
Table 1: Banner Reach 3

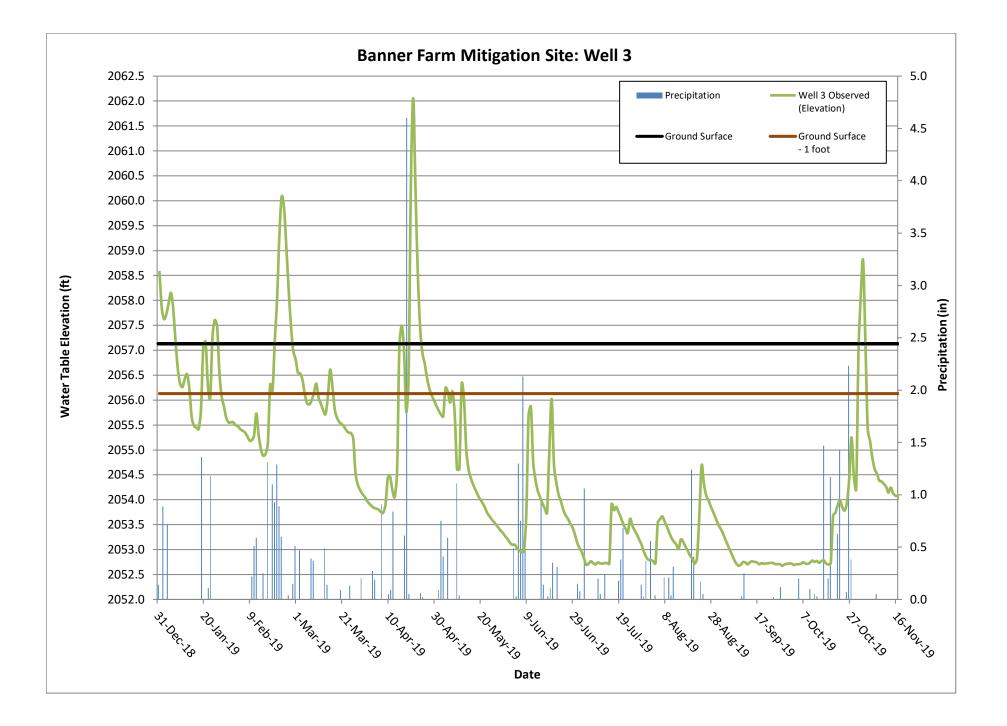
	Notation	Netation		gned Condi	Netes	
	Notation	Units	min max		design	Notes
stream type			(24		
drainage area	DA	sq mi	0.	.67		
bankfull design discharge	Q _{bkf}	cfs	44	4.0		
Cross-Section Features						
bankfull cross-sectional area	A _{bkf}	SF	1′	7.3		
side slopes	H:V	ft/ft	3	.0		
channel bottom width	$b_{ m bkf}$	feet	4	.0		
bankfull wetted perimeter	WP bkf	feet	15	5.4		
bankfull hydraulic radius	r _{bkf}	feet	1	.1		
nannings 'n'			0.0)35		
average velocity during bankfull event	V _{bkf}	fps	2	3		
width at bankfull	W _{bkf}	feet	14	4.8		
mean depth at bankfull	d _{bkf}	feet	1	.2		
bankfull width to depth ratio	w_{bkf}/d_{bkf}		1	3		Design Parameters
maximum depth at bankfull	d _{max}	feet	1.4	2.1		
max depth ratio	d_{max}/d_{bkf}		1.2	1.8	1.70	Design Parameters
bank height ratio	BHR		1.0	1.0		Design Parameters
floodprone area width	W _{fpa}	feet	33	74		
entrenchment ratio	ER		2.2	5.0		
Slope						
valley slope	S _{valley}	feet/ foot	0.0	029		
channel slope	S _{channel}	feet/ foot	0.0021	0.0026	0.0025	
Riffle Features						
riffle slope	S _{riffle}	feet/ foot	0.0025	0.0090		
riffle slope ratio	S _{riffle} /S _{channel}		1.2	3.4		Reference Range
Pool Features						
pool slope	Spool	feet/ foot	0.0000	0.0008		
pool slope ratio	S _{poo} l/S _{channel}		0.00	0.30		Reference Range
pool-to-pool spacing	L _{p-p}	feet	24	96		
pool spacing ratio	L _{p-p} /w _{bkf}		1.6	6.5		Reference Range
maximum pool depth at bankfull	d _{pool}	feet	2.5	3.7		
pool depth ratio	d _{pool} /d _{bkf}		2.1	3.2		Reference Range
pool width at bankfull	Wpool	feet	14.8	23.7		
pool width ratio	w _{pool} /w _{bkf}		1.0	1.6		Reference Range
pool cross-sectional area at bankfull	A _{pool}	SF	19.1	43.3		0
pool area ratio	A _{pool} /A _{bkf}		1.1	2.5		Design Parameters
Pattern Features	F 044	ب ــــــــــــــــــــــــــــــــــــ				Ŭ
sinuosity	K		1.10	1.40	1.30	Design Parameters
belt width	W _{blt}	feet	37	98		6
meander width ratio	w _{blt} /w _{bkf}		2.5	6.6		Design Parameters
linear wavelength	LW	feet	89	178		Design 1 arameters
linear wavelength ratio	LW/Wbkf	1001	6.0	178	+ +	Design Parameters
		feet	111	222	+ +	Design Farameters
meander length	L _m	icei	7.5			Dafanasse Des
meander length ratio	L _m /w _{bkf}	fact		15.0		Reference Range
radius of curvature	R _c	feet	30	44		Derive D
radius of curvature ratio	R_c / w_{bkf}		2.0	3.0		Design Parameters

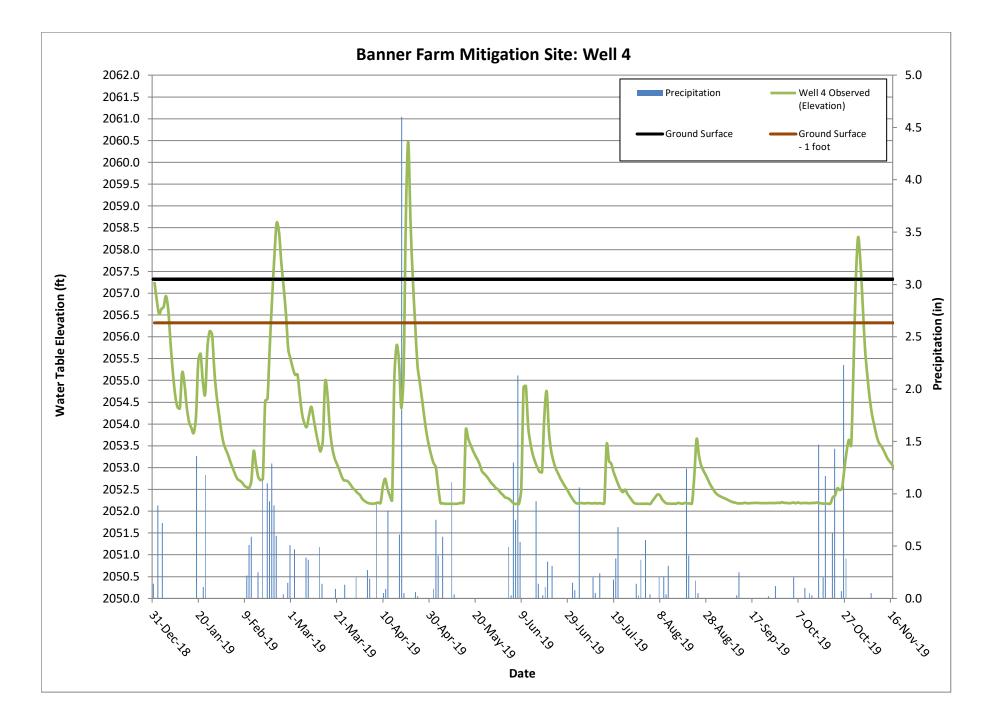
Table 1: Banner Reach 4a

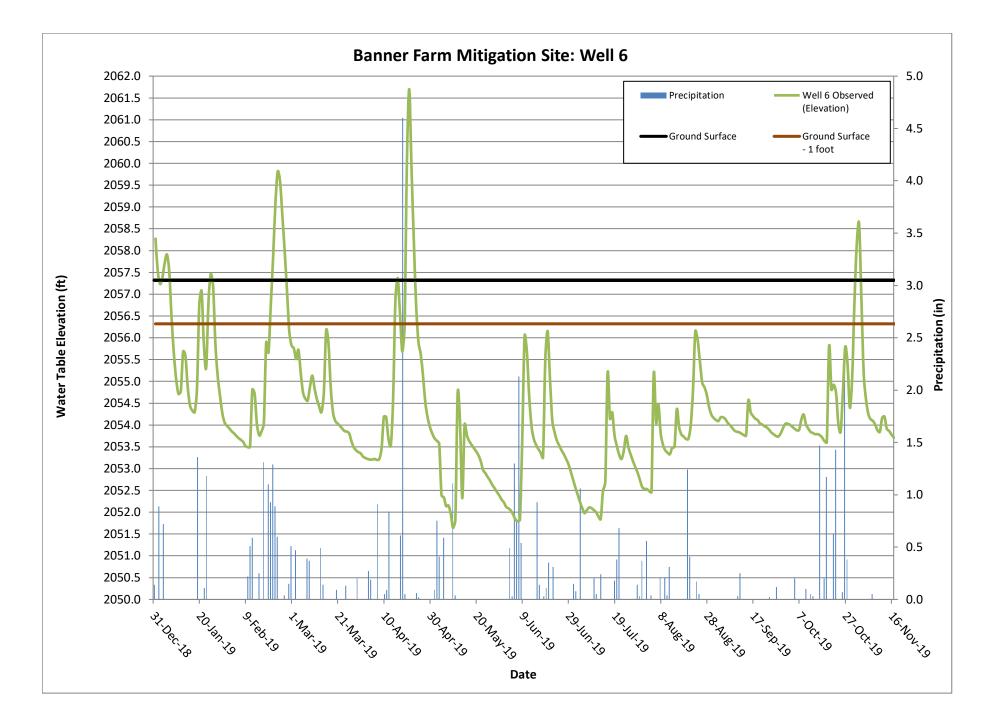
	Notation	Unito	Desi	gned Condi	Notos	
	Notation	Units	min	max	design	Notes
stream type			C	5/4		
drainage area	DA	sq mi	0.	99		
bankfull design discharge	Q _{bkf}	cfs	60).0		
Cross-Section Features						
bankfull cross-sectional area	A _{bkf}	SF	30).3		
side slopes	H:V	ft/ft	3.	.0		
channel bottom width	b _{bkf}	feet	6	.0		
bankfull wetted perimeter	$W\!P_{\rm bkf}$	feet	20).6		
bankfull hydraulic radius	r _{bkf}	feet	1.	.5		
nannings 'n'			0.0)35		
average velocity during bankfull event	V _{bkf}	fps	2	.0		
width at bankfull	W _{bkf}	feet	19	9.8		
mean depth at bankfull	d _{bkf}	feet	1	.5		
bankfull width to depth ratio	w_{bkf}/d_{bkf}		1	.3		Design Parameters
maximum depth at bankfull	d _{max}	feet	1.8	2.6		
max depth ratio	d_{max}/d_{bkf}		1.2	1.7	1.67	Design Parameters
bank height ratio	BHR		1.0	1.0		Design Parameters
floodprone area width	W _{fpa}	feet	44	99		
entrenchment ratio	ER		2.2	5.0		
Slope						
valley slope	S _{valley}	feet/ foot	0.0	015		
channel slope	S _{channel}	feet/ foot	0.0012	0.0013	0.0013	
Riffle Features		I				
riffle slope	S _{riffle}	feet/ foot	0.0014	0.0043		
riffle slope ratio	$S_{riffle}/S_{channel}$		1.2	3.4		Reference Range
Pool Features						
pool slope	Spool	feet/ foot	0.0000	0.0004		
pool slope ratio	S _{poo} l/S _{channel}		0.00	0.30		Reference Range
pool-to-pool spacing	L _{p-p}	feet	32	129		6
pool spacing ratio	L _{p-p} /w _{bkf}		1.6	6.5		Reference Range
maximum pool depth at bankfull	d _{pool}	feet	2.3	5.4		6
pool depth ratio	d _{pool} /d _{bkf}		1.5	3.5		Reference Range
pool width at bankfull	W _{pool}	feet	19.8	31.7		0-
pool width ratio	Wpool/Wbkf		1.0	1.6		Reference Range
pool cross-sectional area at bankfull	A _{pool}	SF	33.3	75.7		0-
pool area ratio	A _{pool} /A _{bkf}		1.1	2.5		Design Parameters
Pattern Features	poor ou	· · · · · ·		ļ		<u> </u>
sinuosity	К		1.20	1.30	1.20	Design Parameters
belt width	W _{blt}	feet	50	131		2 chiga i urumeters
meander width ratio		1001	2.5	6.6		Design Deromotore
	W kf	fort	119			Design Parameters
linear wavelength		feet		238		Danim D.
linear wavelength ratio	LW/w _{bkf}	6. /	6.0	12.0		Design Parameters
meander length	L _m	feet	149	297		D. (
meander length ratio	L _m /w _{bkf}		7.5	15.0		Reference Range
radius of curvature	R _c	feet	40	59		
radius of curvature ratio	R_c / w_{bkf}		2.0	3.0		Design Parameters

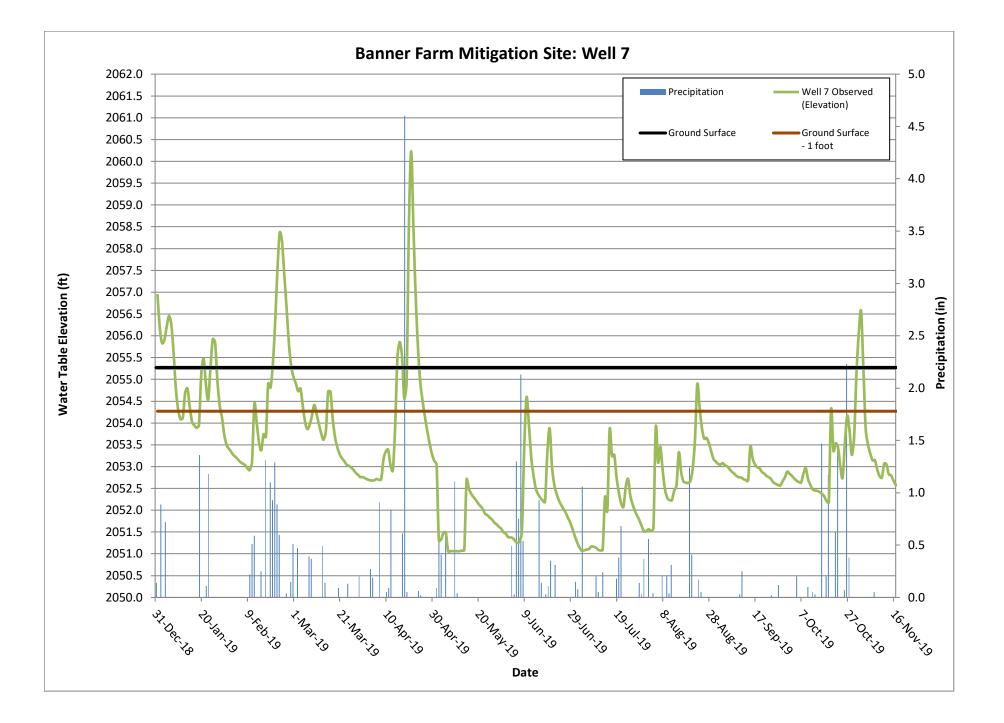

Table 1: Banner Reach 4b

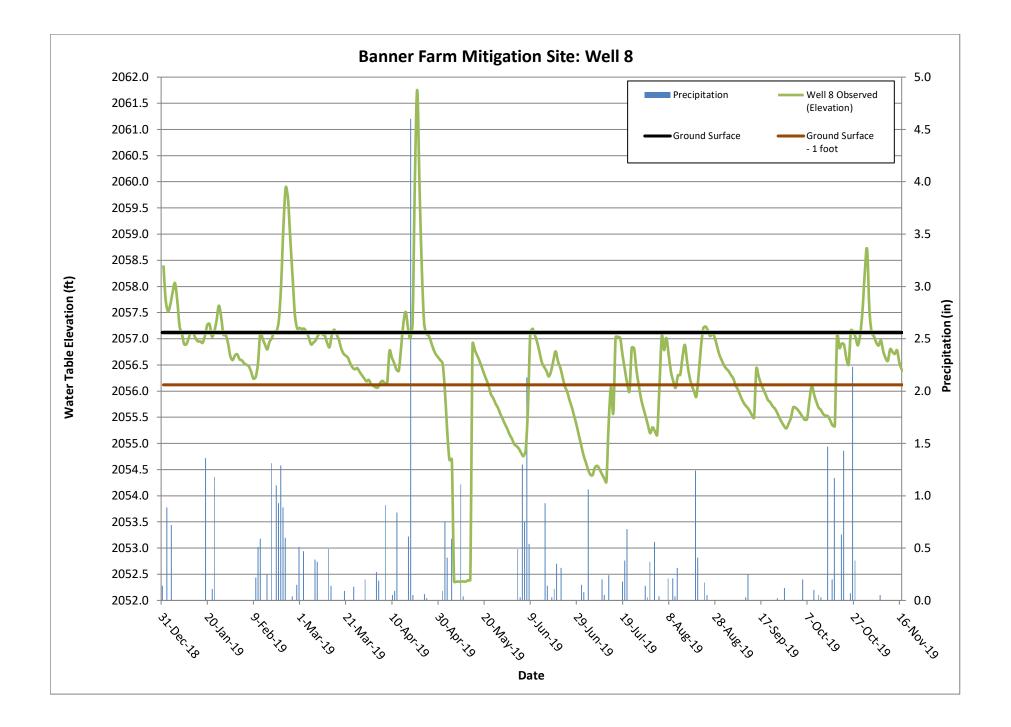

	Notation	Netation		gned Condi	Netes	
	Notation	Units	min	max	design	Notes
stream type			C:	5/4		
drainage area	DA	sq mi	1.	13		
oankfull design discharge	Q _{bkf}	cfs	70).0		
Cross-Section Features						
bankfull cross-sectional area	A _{bkf}	SF	32	2.7		
side slopes	H:V	ft/ft	3.	.0		
channel bottom width	$b_{ m bkf}$	feet	7.	.0		
bankfull wetted perimeter	WP bkf	feet	21	.6		
bankfull hydraulic radius	r _{bkf}	feet	1.	.5		
nannings 'n'			0.0)35		
average velocity during bankfull event	V _{bkf}	fps	2	.3		
width at bankfull	W _{bkf}	feet	20).8		
mean depth at bankfull	d _{bkf}	feet	1	.6		
bankfull width to depth ratio	w_{bkf}/d_{bkf}		1	3		Design Parameters
maximum depth at bankfull	d _{max}	feet	1.9	2.7		
max depth ratio	d_{max}/d_{bkf}		1.2	1.7	1.6	Design Parameters
bank height ratio	BHR		1.0	1.0		Design Parameters
floodprone area width	W _{fpa}	feet	46	104		
entrenchment ratio	ER		2.2	5.0		
Slope						
valley slope	S _{valley}	feet/ foot	0.0020			
channel slope	S _{channel}	feet/ foot	0.0015	0.0019	0.0017	
Riffle Features		I				
riffle slope	S _{riffle}	feet/ foot	0.0018	0.0065		
riffle slope ratio	$S_{riffle}/S_{channel}$		1.2	3.4		Reference Range
Pool Features						
pool slope	Spool	feet/ foot	0.0000	0.0006		
pool slope ratio	S _{poo} l/S _{channel}		0.00	0.30		Reference Range
pool-to-pool spacing	L _{p-p}	feet	33	135		6
pool spacing ratio	L _{p-p} /w _{bkf}		1.6	6.5		Reference Range
maximum pool depth at bankfull	d _{pool}	feet	2.4	5.5		
pool depth ratio	d _{pool} /d _{bkf}		1.5	3.5		Reference Range
pool width at bankfull	W _{pool}	feet	20.8	33.3		6
pool width ratio	w _{pool} /w _{bkf}		1.0	1.6		Reference Range
pool cross-sectional area at bankfull	A _{pool}	SF	35.9	81.7		
pool area ratio	A _{pool} /A _{bkf}		1.1	2.5		Design Parameters
Pattern Features	poor oki	با				
sinuosity	К		1.05	1.30	1.20	Design Parameters
belt width	W _{blt}	feet	42	137		
meander width ratio	w _{blt} /w _{bkf}	1001	2.0	6.6		Design Parameters
	LW	feet	125	250		Design rarameters
linear wavelength linear wavelength ratio		1001	6.0			Design Dependent
	LW/w _{bkf}	fort		12.0		Design Parameters
meander length	L _m	feet	156	312		D.C. D
meander length ratio	L _m /w _{bkf}	6. /	7.5	15.0		Reference Range
radius of curvature	R _c	feet	42	62		
radius of curvature ratio	R_c / w_{bkf}		2.0	3.0	I	Design Parameters

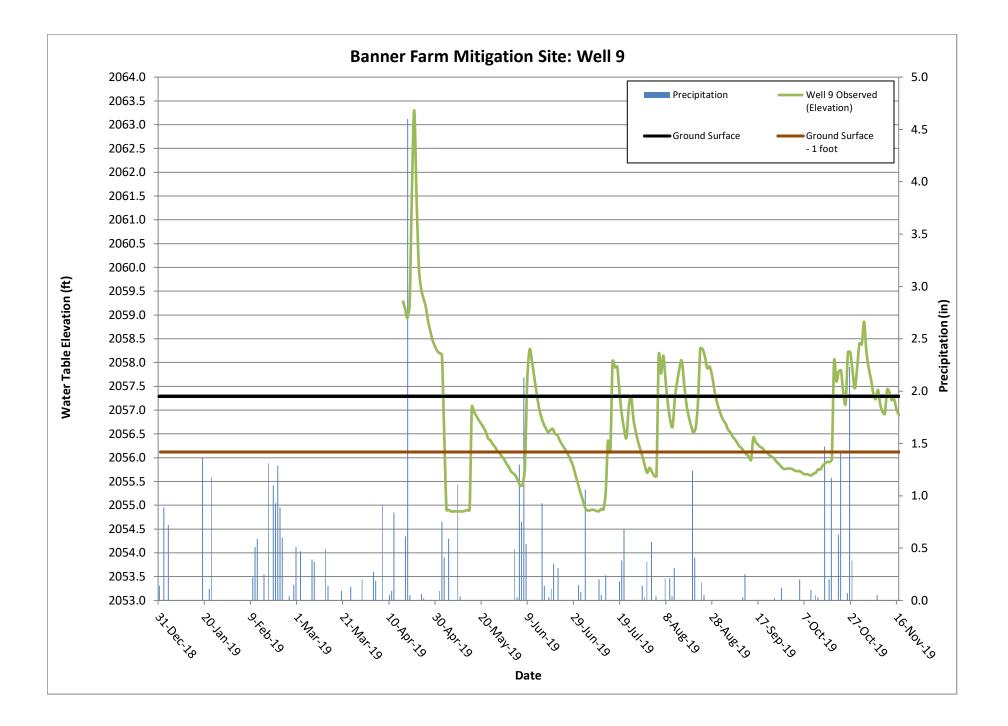

Table 1: UT1

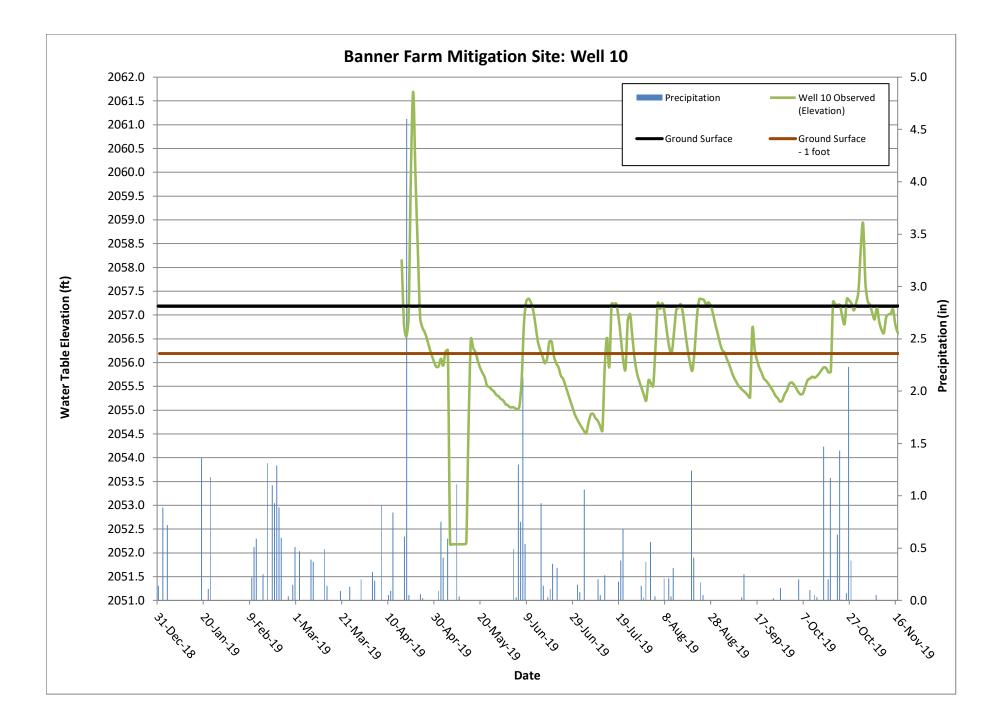

Table 1: UT1			Designed Conditi		tions	 .
	Notation Units		max	design	Notes	
stream type			E	5	Ŭ	
drainage area	DA	sq mi	0.	13		
bankfull design discharge	Q _{bkf}	cfs	14	1.0		
Cross-Section Features						
bankfull cross-sectional area	A _{bkf}	SF	8	.4		
side slopes	H:V	ft/ft	2.	.0		
channel bottom width	$b_{\rm bkf}$	feet	4.	.2		
bankfull wetted perimeter	WP bkf	feet	9.	.6		
bankfull hydraulic radius	r _{bkf}	feet	0.	.9		
mannings 'n'			0.0	35		
average velocity during bankfull event	V _{bkf}	fps	1	.7		
width at bankfull	w _{bkf}	feet	9	.0		
mean depth at bankfull	d _{bkf}	feet	0	.9		
bankfull width to depth ratio	w _{bkf} /d _{bkf}		1	0		Design Parameters
maximum depth at bankfull	d _{max}	feet	0.9	1.4		
max depth ratio	d _{max} /d _{bkf}		1.0	1.5	1.5	Design Parameters
bank height ratio	BHR		1.0	1.0		Design Parameters
floodprone area width	W _{fpa}	feet	20	72		
entrenchment ratio	ER		2.2	8.0		
Slope	•					
valley slope	S _{valley}	feet/ foot	0.0	026		
channel slope	S _{channel}	feet/ foot	0.0016	0.0022	0.0020	
Riffle Features						
riffle slope	S _{riffle}	feet/ foot	0.0020	0.0043		
riffle slope ratio	S _{riffle} /S _{channel}		1.2	2.0		
Pool Features	•					
pool slope	Spool	feet/ foot	0.0000	0.0007		
pool slope ratio	Spool/Schannel		0.00	0.30		Reference Reaches
pool-to-pool spacing	L _{p-p}	feet	36	90		
pool spacing ratio	L _{p-p} /w _{bkf}		4.0	10.0		Reference Reach/Construction Experience
maximum pool depth at bankfull	d _{pool}	feet	1.9	3.8		· · · · · ·
pool depth ratio	d _{pool} /d _{bkf}		2.0	4.0		Reference Reach
pool width at bankfull	W _{pool}	feet	10.8	13.5		
pool width ratio	wpool/wbkf		1.2	1.5		Reference Reach/Construction Experience
pool cross-sectional area at bankfull	A _{pool}	SF	11.0	25.3		
pool area ratio	Apool/Abkf		1.3	3.0		Reference Reach/Construction Experience
Pattern Features	1					-
sinuosity	K		1.20	1.60	1.30	Design Parameters
belt width	w _{blt}	feet	32	72		5
meander width ratio	w _{blt} /w _{bkf}		3.5	8.0		Reference Reach/Construction Experience
linear wavelength	LW	feet	36	90		
linear wavelength ratio	LW/w _{bkf}		4.0	10.0		Reference Reach/Construction Experience
meander length	Lun webki	feet	41	108		
				12.0	1	Reference Range/Rosgen Litereature
meander length ratio	L.m/Whitf		4.1			
meander length ratio radius of curvature	L _m /w _{bkf}	feet	4.5	45		Reference Range Rosgen Excreature

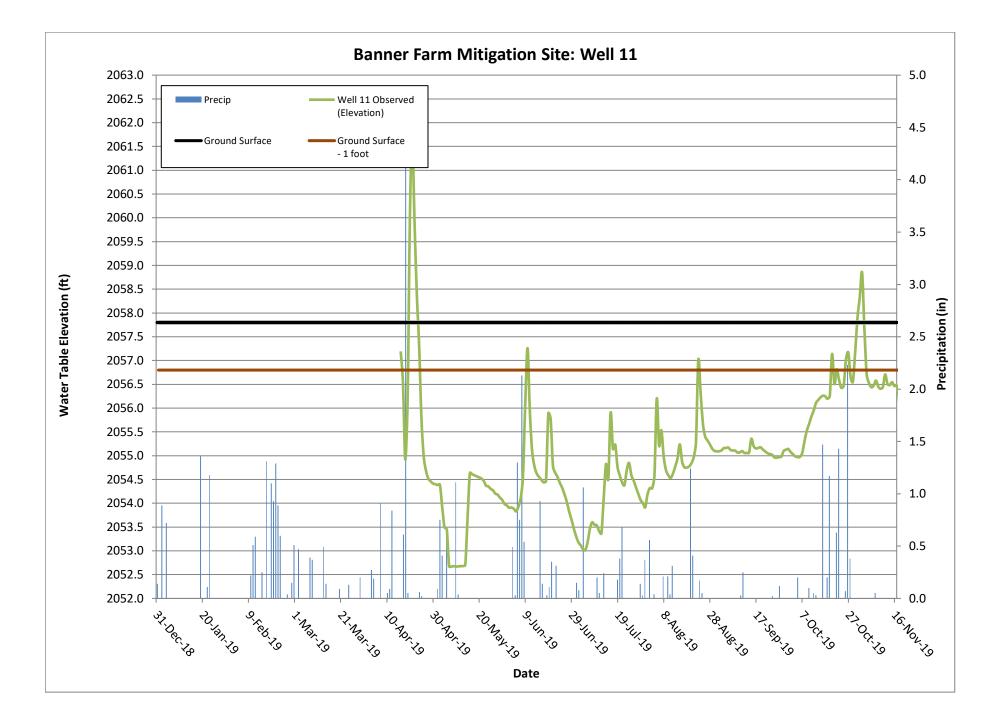

APPENDIX 7 Wetland Design Documents and Data

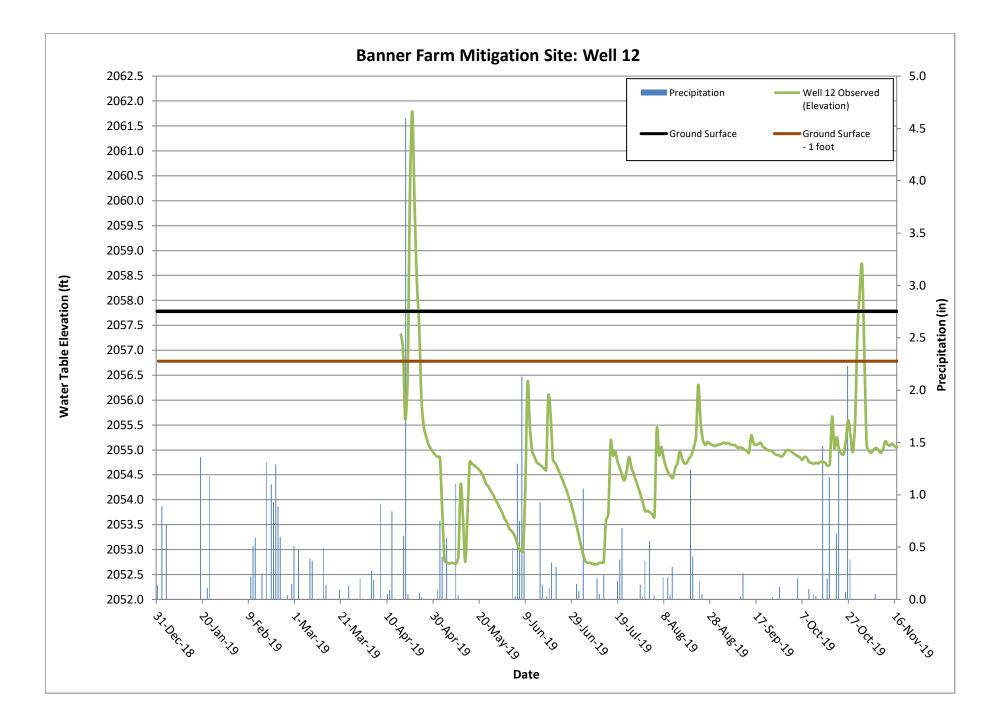


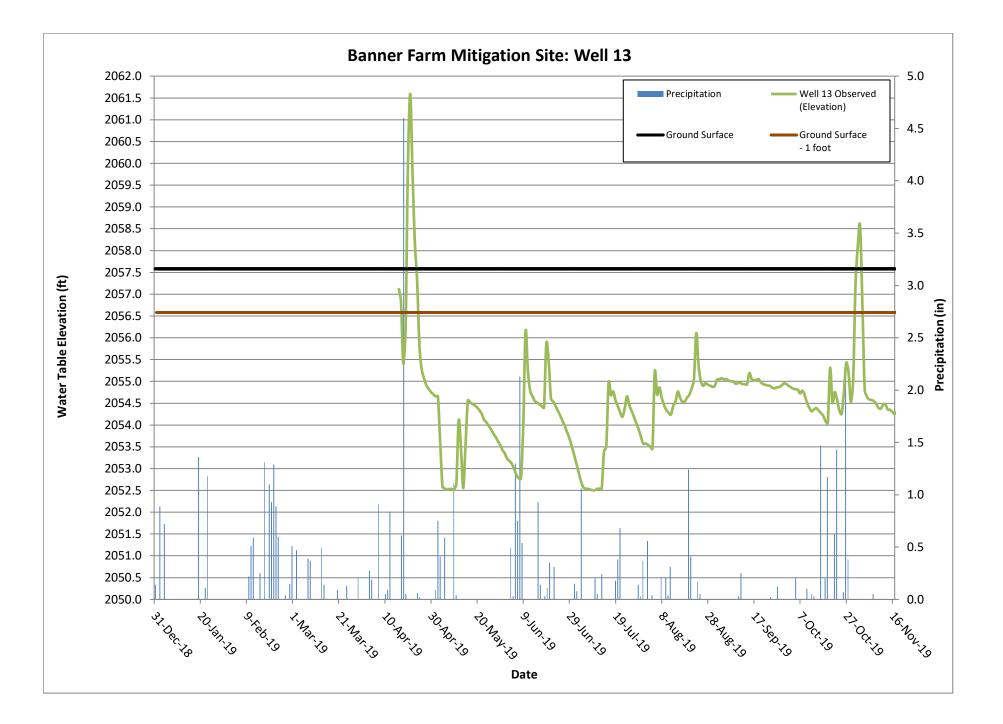


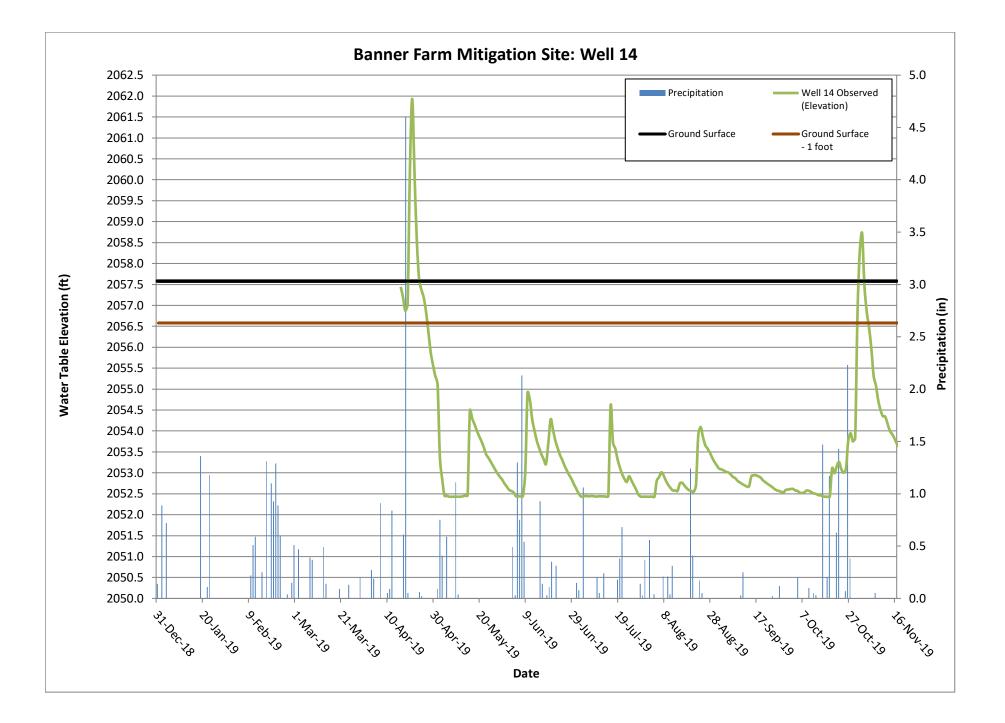


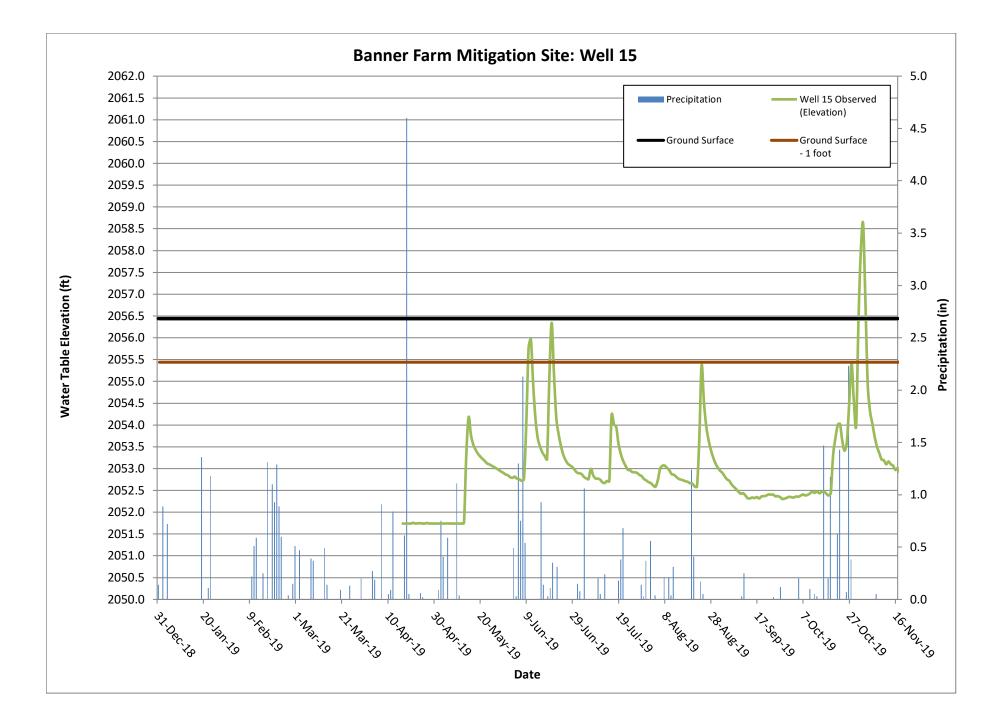


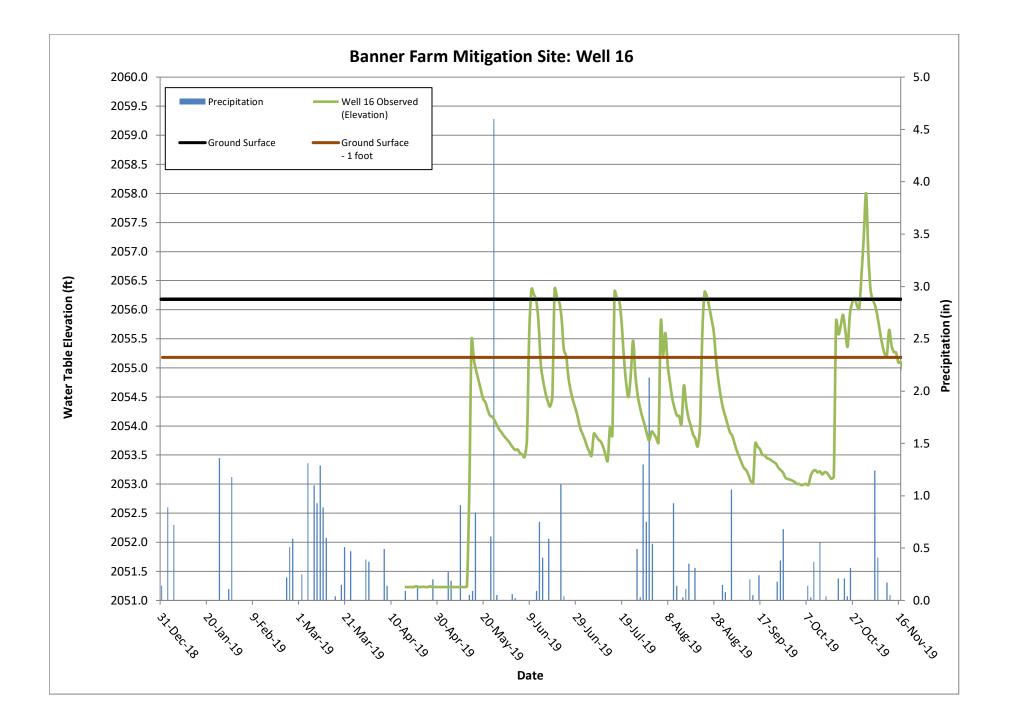












Soil & Environmental Consultants, PA

11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone: (919) 846-5900 • Fax: (919) 846-9467 www.SandEC.com

PRELIMINARY HYDRIC SOIL INVESTIGATION

Banner Farm Project Site 52 Banner Farm Rd., NC Mountains French Broad River Basin Henderson County, North Carolina

Prepared for: Mr. Eric Neuhaus Wildlands 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

November 20th, 2017

INTRODUCTION

Soil & Environmental Consultants, PA (S&EC, PA) was retained to perform a preliminary evaluation to assess the presence and extent of hydric soils onsite. There are a number of field ditches that dissect the site. The "H" areas evaluated are currently planted in winter wheat or are pasture. The H2 area has been maintained in the past but currently has a year or more growth of mostly herbaceous vegetation with some small saplings inter mixed.

METHODOLOGY

On November 15th, 2017 Kevin Martin (LSS, PWS) of S&EC, PA performed a preliminary soil evaluation at the site. Hand auger borings were advanced on the property at locations as appropriate to approximately estimate the location and extent of hydric soils within the project area (see attached Approximate Hydric Soil Locations Map). Each soil boring was evaluated to assess the presence or absence of hydric soil indicators. Hydric soil indicators were identified utilizing the *NRCS Field Indicators of Hydric Soils in the Unities States - A Guide for Identifying and Delineating Hydric Soils (Version 7.0, 2010).*

All areas evaluated are mapped as the Toxaway (Fine-loamy, mixed, superactive, nonacid, mesic Cumulic Humaquepts), Rosman (Coarse-loamy, mixed, superactive, mesic Fluventic Humudepts) or Codorus (Fine-loamy, mixed, active, mesic Fluvaquentic Dystrudepts) soil series. Most hydric soils observed onsite within the H area have a higher clay content than these soils and are more like the soil series Hemphill soil series (Fine, mixed, active, mesic Umbric Endoaqualfs). Hydric soils n the H2 area are more like the Chatuge soil series (Fine-loamy, mixed, semiactive, mesic Typic Endoaqualts) since they are not as clayey as soils in the H areas and the surface colors are not as dark.

RESULTS

Numerous soil borings were performed within the study area. Soil characteristics were evaluated and all areas identified as containing hydric soils met the hydric soil criteria described below. An X" on the map indicates soil boring location and depth to hydric soil indicators.

U- are non hydric soil areas

H- are hydric soils areas containing a depleted matrix but that do not exhibit primary wetland hydrology indicators.

H2- are hydric soils areas containing a depleted matrix that also contain one or more wetland hydrology indicators.

Indicator F3: Depleted Matrix

Technical Description: A layer that has a depleted matrix with 60 percent

or more chroma of 2 or less and that has a minimum thickness of either:

(a) 2 in. (5 cm) if the 2 in. (5 cm) is entirely within the upper 6 in. (15 cm)

of the soil, or

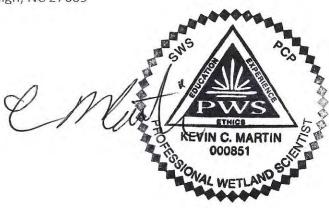
(b) 6 in. (15 cm) starting within 10 in. (25 cm) of the soil surface.

0	150	300		600 Feet

Figure 1 - Hydric Soils Evaluation Banner Farm French Broad 06010105

Henderson County, NC

Soil & Environmental Consultants, PA


11010 Raven Ridge Road • Raleigh, North Carolina 27614 • Phone: (919) 846-5000 • Fax: (919) 846-9467 www.SandEC.com

HYDRIC SOIL INVESTIGATION

Banner Farm Project Site 52 Banner Farm Rd., NC Mountains French Broad River Basin Henderson County, North Carolina

Prepared for: Mr. Eric Neuhaus Wildlands 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

November 20th, 2018

INTRODUCTION

Soil & Environmental Consultants, PA (S&EC, PA) was retained to perform a preliminary evaluation to assess the presence and extent of hydric soils onsite. There are a number of field ditches that dissect the site. The "H" areas evaluated are currently planted in winter wheat, fallow or are pasture. The H3 areas are similar to the H areas but were evaluated on different dates. Two H3 areas contain fill material above the natural soils that have hydric soil indicators. The H2 area has been maintained in the past but currently has a year or more growth of mostly herbaceous vegetation with some small saplings inter mixed. The H4 areas have F3 indicators within 10" but were underlain by a bright clay loam subsoil which likely indicates the saturation is not caused by groundwater but instead is caused by surface water and therefore it may be difficult to restore wetland hydrology to those areas.

METHODOLOGY

On November 15th, 2017 and October 24th, 2018 Kevin Martin (LSS, PWS) of S&EC, PA performed a hydric soil evaluation at the site. Hand auger borings were advanced on the property at locations as appropriate to approximately estimate the location and extent of hydric soils within the project area (see attached Approximate Hydric Soil Locations Map). Each soil boring was evaluated to assess the presence or absence of hydric soil indicators. Hydric soil indicators were identified utilizing the NRCS Field Indicators of Hydric Soils in the Unities States - A Guide for Identifying and Delineating Hydric Soils (Version 8.1, 2017)..

All areas evaluated are mapped as the Toxaway (Fine-loamy, mixed, superactive, nonacid, mesic Cumulic Humaquepts), Rosman (Coarse-loamy, mixed, superactive, mesic Fluventic Humudepts) or Codorus (Fine-loamy, mixed, active, mesic Fluvaquentic Dystrudepts) soil series. Most hydric soils observed onsite within the H & H3 areas have a somewhat higher clay content than these soils and are more like the Hemphill soil series (Fine, mixed, active, mesic Umbric Endoaqualfs) but contain some areas along the fringes of the map unit that resemble the Chatuge soil series. Hydric soils in the H2 area are more like the Chatuge soil series (Fine-loamy, mixed, semiactive, mesic Typic Endoaqualts) since they are not as clayey as soils in the H areas and the surface colors are not as dark. The H4 areas have F3 indicators within 10" but were underlain by a strong brown clay loam subsoil (7.5 YR5/6)

RESULTS

Numerous soil borings were performed within the study area. Soil characteristics were evaluated and all areas identified as containing hydric soils met the hydric soil criteria described below. An X" on the map indicates soil boring location and depth to hydric soil indicators.

U- are non hydric soil areas

H & H3- are hydric soils areas containing a depleted matrix but that do not exhibit primary wetland hydrology indicators.

H2- are hydric soils areas containing a depleted matrix that also contain one or more wetland hydrology indicators.

H4- are technically hydric soil areas containing a depleted matrix within 10" but are underlain by a strong brown clay loam subsoil (7.5 YR5/6) that usually began between 14" and 18" below the soil surface.

Indicator F3: Depleted Matrix

Technical Description: A layer that has a depleted matrix with 60 percent or more chroma of 2 or less and that has a minimum thickness of either:

(a) 2 in. (5 cm) if the 2 in. (5 cm) is entirely within the upper 6 in. (15 cm) of the soil, or

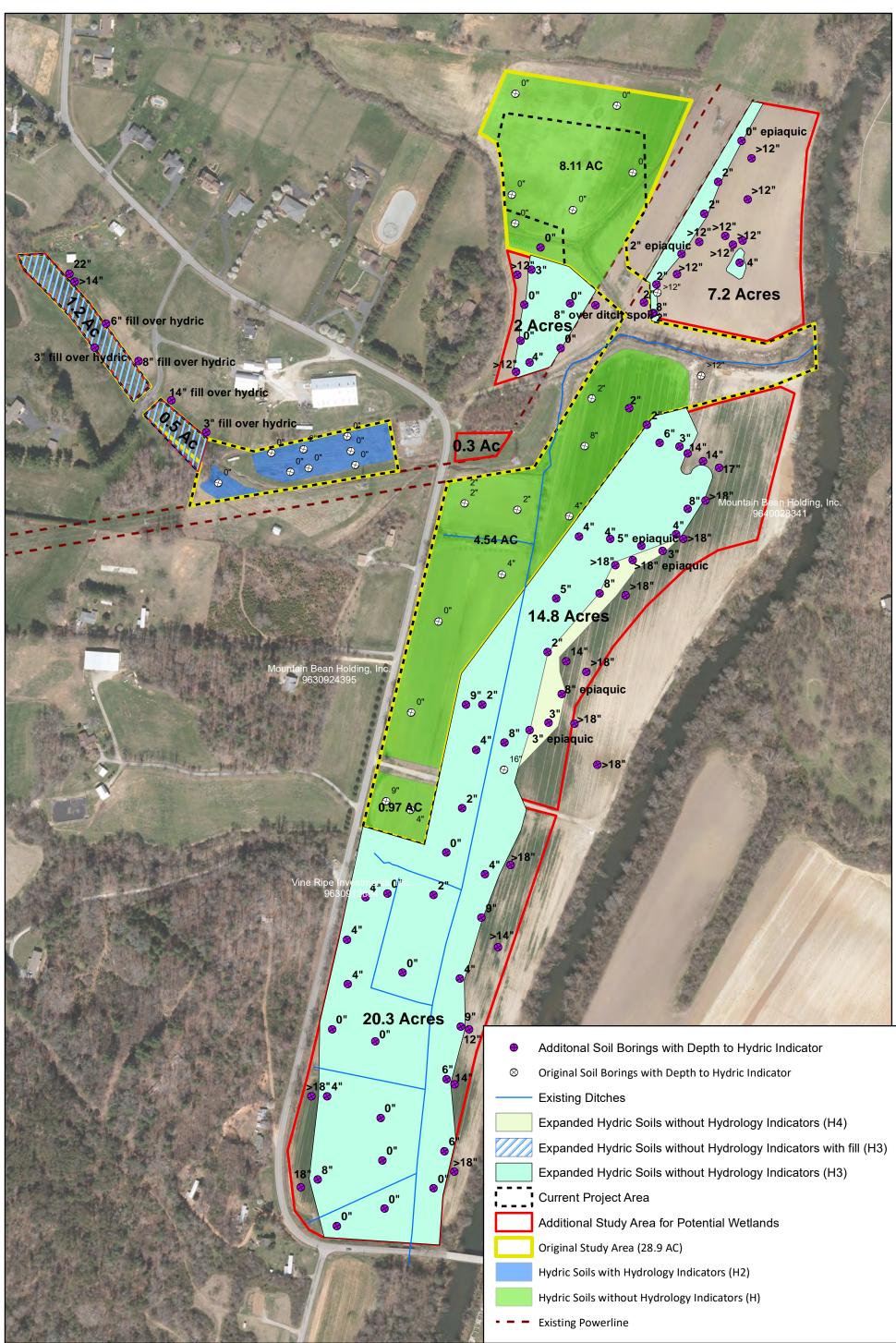
(b) 6 in. (15 cm) starting within 10 in. (25 cm) of the soil surface.

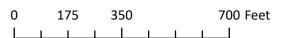
Typical Soil Profile Hemphill SERIES

The Hemphill series consists of very deep, very poorly drained soils on low stream terraces in the Southern Blue Ridge

TAXONOMIC CLASS: Fine, mixed, active, mesic Umbric Endoaqualfs

A--0 to 14+ inches; dark grayish brown (2.5Y 4/2) with few brown (7.5YR 5/4) pore linings, clay loam to clay


Chatuge SERIES


The Chatuge series consists of very deep, poorly drained, moderately permeable soils that formed in loamy sediments on low stream terraces.

TAXONOMIC CLASS: Fine-loamy, mixed, semiactive, mesic Typic Endoaquults

A--0 to 6 inches; very dark grayish brown (10YR 3/2) loam; weak granular structure with common 7.5YR 3/4 pore linings.

Btg--6 to 14+ inches; dark grayish brown (10YR 4/2) clay loam; weak subangular blocky structure;

Expanded Hydric Soils Evaluation Banner Farm French Broad 06010105

Henderson County, NC

WETS Station: ASHEVILLE AIRPORT, NC

Requested years: 1971 - 2000

Month	Temperature (°F)			Precipitation (inches)						
	Avg daily	Avg daily	Avg daily	Avg		chance l have	Avg number of days with 0.10 inch	Average total		
	max	min	mean		less than	more than	or more	snowfall		
Jan	47.3	26.5	36.9	4.06	2.72	4.86	7	4.7		
Feb	51.4	28.7	40.1	3.83	2.32	4.64	6	3.2		
Mar	59.1	35.6	47.4	4.59	3.14	5.48	8	2.5		
Apr	67.8	42.3	55.1	3.50	2.07	4.25	6	0.6		
May	74.7	51.1	62.9	4.41	2.97	5.28	8	0.0		
Jun	81.1	58.9	70.0	4.38	2.74	5.30	8	0.0		
Jul	84.4	63.5	73.9	3.87	2.26	4.70	7	0.0		
Aug	82.9	62.5	72.7	4.30	2.70	5.20	7	0.0		
Sep	77.3	56.1	66.7	3.72	2.15	4.52	6	0.0		
Oct	68.4	43.8	56.1	3.17	1.68	3.83	5	0.0		
Nov	58.6	35.8	47.2	3.82	2.85	4.47	6	0.4		
Dec	50.6	29.3	39.9	3.39	2.20	4.08	6	1.7		
Annual:					41.91	51.37				
Average	67.0	44.5	55.7	-	-	-	-	-		
Total	_	-	-	47.06			80	13.2		

GROWING SEASON DATES

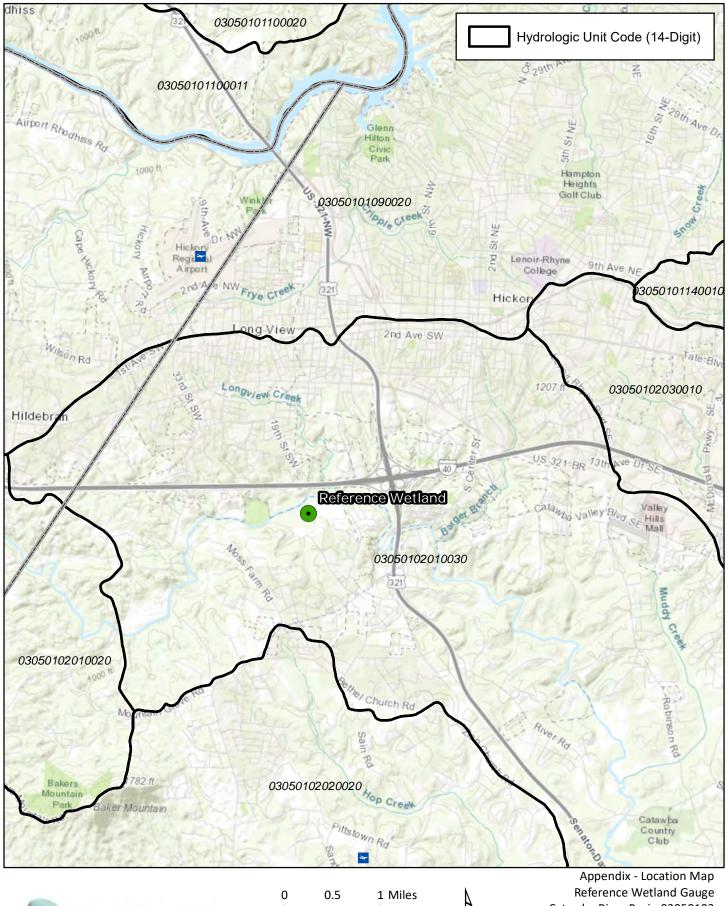
Requested years of data:	1971 - 2000		
Years with missing data:	24 deg = 0	28 deg = 0	32 deg = 0
Years with no occurrence:	24 deg = 0	28 deg = 0	32 deg = 0
Data years used:	24 deg = 30	28 deg = 30	32 deg = 30

	Temperature							
Probability	24 F or higher	28 F or higher	32 F or higher					
	Beginning and Ending Dates Growing Season Length							
50 percent *	3/16 to 11/15 244 days	4/2 to 11/1 213 days	4/22 to 10/16 177 days					
70 percent *	3/12 to 11/20 253 days	3/28 to 11/7 224 days	4/19 to 10/20 184 days					

* Percent chance of the growing season occurring between the Beginning and Ending dates.

STATS TABLE

Total precipitation (inches)

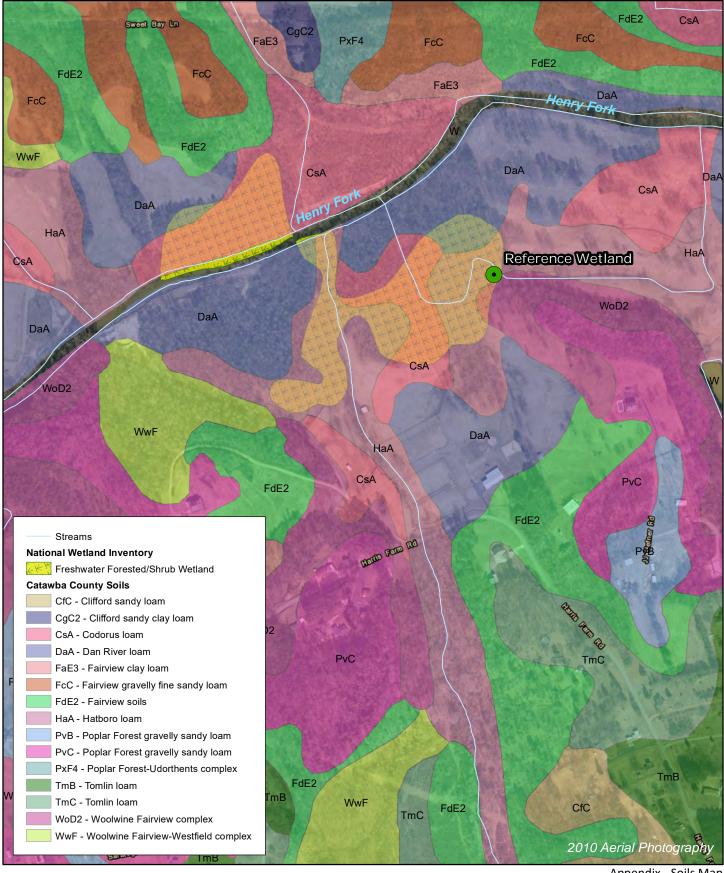

1	1												
Yr	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annl
1946	3.35	M4.27	M5.93	M4.42	3.81	2.74	M4.44	M3.86	3.11	4.44	3.13	1.84	45.34
1947	8.29	1.17	3.09	M2.16	2.65	M4.47	1.90	3.51	2.07	6.09	4.56	2.01	41.97
1948	3.76	3.47	6.73	1.72	3.46	3.01	5.64	6.84	3.23	M1.16	9.92	3.71	52.65
1949	3.18	M2.98	4.53	5.22	4.64	4.28	10.41	10.26	2.88	6.23	1.56	2.94	59.11
1950	2.17	1.40	5.71	1.03	4.87	2.79	8.87	3.66	3.00	3.03	0.77	5.15	42.45
1951	1.21	2.11	5.37	3.44	0.51	6.17	4.64	1.84	3.54	2.05	2.97	6.51	40.36
1952	4.35	3.61	9.42	4.33	2.52	3.12	1.00	7.34	1.61	1.18	3.23	2.53	44.24
1953	5.25	5.52	2.68	2.25	1.72	4.90	2.21	3.31	3.93	0.39	1.97	5.52	39.65
1954	7.36	4.74	6.03	3.35	2.64	1.83	2.33	3.24	0.41	1.06	4.33	4.10	41.42
1955	1.31	3.86	3.37	4.14	5.03	3.28	6.83	2.97	0.94	1.87	1.70	0.88	36.18
1956	1.01	6.31	3.06	6.25	M4.11	2.27	4.65	1.61					29.27
1957			1.99	6.91	3.40	6.44	1.54	3.30	6.00	2.83	6.44	3.49	42.34
1958	3.36	3.74	3.67	6.79	3.06	2.36	7.58	2.36	1.07	2.01	2.22	4.21	42.43
1959	3.29	1.93	4.19										9.41
1960													
1961													
1962													
1963													
1964									6.82	9.15	2.68	3.71	22.36
1965	2.16	4.60	5.10	2.62	3.33	4.12	4.47	4.03	4.69	2.92	1.30	0.16	39.50
1966	3.37	6.56	2.59	5.47	4.73	2.46	3.24	7.73	4.55	5.37	3.32	2.36	51.75
1967	2.02	2.20	2.86	1.11	6.79	4.45	6.90	11.28	2.53	3.30	2.54	6.13	52.11
1968	2.93	0.62	6.65	2.37	2.92	5.06	7.18	3.31	2.64	5.02	2.98	3.10	44.78
1969	2.64	5.08	4.01	3.53	3.32	3.82	7.53	6.47	3.04	2.63	1.91	4.63	48.61
1970	1.75	2.42	2.62	2.96	1.72	2.72	5.02	2.46	1.17	5.55	1.83	2.72	32.94
1971	2.53	4.93	3.48	2.06	3.54	5.00	5.47	3.03	3.80	7.05	2.84	4.32	48.05
1972	3.57	2.02	3.19	1.49	6.63	6.54	4.66	1.88	5.29	4.44	4.42	3.89	48.02
1973	4.26	4.23	8.91	5.71	8.83	3.87	6.95	4.57	3.12	2.41	3.57	8.48	64.91
1974	3.44	4.24	3.18	4.99	5.58	3.73	3.93	7.34	4.13	1.28	4.22	2.38	48.44
1975	3.86	4.56	9.86	0.61	8.17	2.12	3.31	3.63	7.53	3.94	4.89	4.44	56.92

Yr	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annl
1976	3.51	2.20	4.96	0.25	8.67	5.51	3.18	4.23	3.50	5.59	1.58	4.05	47.23
1977	2.09	1.02	7.29	4.05	3.96	5.11	1.03	3.68	9.12	3.79	6.88	2.43	50.45
1978	7.47	0.44	5.22	2.97	4.65	2.29	0.63	6.91	2.57	0.30	2.49	4.32	40.26
1979	6.81	5.14	5.72	7.26	5.35	2.20	5.52	3.63	5.60	1.40	7.76	1.05	57.44
1980	2.85	0.53	8.26	4.77	4.54	4.68	2.21	2.38	4.36	2.62	3.04	0.59	40.83
1981	0.45	4.80	3.24	2.07	7.50	4.41	2.06	0.52	1.36	2.19	1.19	4.79	34.58
1982	5.41	7.02	1.92	3.62	3.78	3.98	9.92	1.73	1.33	3.48	4.59	4.04	50.82
1983	3.39	5.63	6.27	5.27	3.48	3.71	1.06	0.95	5.66	4.43	4.77	8.30	52.92
1984	2.36	6.43	4.82	4.05	6.62	3.69	5.88	5.02	0.16	2.73	2.61	1.34	45.71
1985	2.95	4.74	0.77	2.74	1.59	1.47	4.37	7.04	1.25	3.41	4.91	0.70	35.94
1986	1.11	1.85	2.75	0.57	3.55	1.28	0.46	6.10	3.15	4.19	5.28	4.28	34.57
1987	3.49	6.17	2.85	3.67	1.87	8.94	1.86	1.79	6.79	0.36	3.09	2.33	43.21
1988	3.71	0.88	1.31	3.46	1.06	0.94	2.65	1.78	2.79	3.12	3.47	1.41	26.58
1989	1.65	4.61	2.91	3.17	5.54	10.73	8.33	4.98	8.17	2.98	4.27	3.29	60.63
1990	3.27	8.07	5.95	1.96	5.09	0.90	6.55	7.78	1.43	8.82	1.55	4.50	55.87
1991	3.25	1.66	6.13	5.38	2.41	5.27	6.07	3.83	1.27	0.19	3.34	4.86	43.66
1992	3.08	3.66	3.52	3.99	6.18	6.62	1.10	7.64	3.15	4.15	7.24	3.71	54.04
1993	3.82	2.03	6.16	3.21	4.59	1.12	2.07	5.29	1.56	1.21	3.32	3.59	37.97
1994	5.35	5.11	7.52	3.30	1.74	5.89	6.76	6.01	5.33	4.27	3.15	3.03	57.46
1995	7.03	2.93	2.42	0.98	6.04	8.89	3.61	9.22	1.95	7.23	3.66	1.43	55.39
1996	7.22	2.71	3.36	2.00	2.55	3.54	4.83	6.68	5.22	0.68	4.45	3.92	47.16
1997	4.44	5.29	5.48	5.26	2.91	8.29	2.97	1.37	4.89	3.90	1.60	2.98	49.38
1998	9.96	6.38	3.71	8.70	2.22	3.64	1.97	2.23	1.62	1.79	2.76	3.04	48.02
1999	6.38	3.29	2.82	2.44	2.53	4.39	3.85	3.37	2.20	3.29	3.31	1.98	39.85
2000	3.10	2.33	3.82	5.11	1.27	2.78	2.84	4.45	3.27	0.00	4.25	2.37	35.59
2001	2.63	2.73	5.00	1.32	2.47	2.91	5.50	3.20	4.37	0.60	1.42	2.34	34.49
2002	3.64	1.30	4.36	1.73	3.42	6.13	1.98	2.09	6.05	3.14	4.23	6.40	44.47
2003	1.19	4.47	4.34	5.25	8.36	6.16	10.88	6.80	3.01	2.33	3.89	2.78	59.46
2004	0.83	4.20	2.02	2.95	3.23	7.39	4.68	3.79	13.71	1.11	5.02	3.43	52.36
2005	2.00	2.57	3.33	2.86	1.65	10.09	10.26	5.71	0.34	1.20	3.74	3.51	47.26
2006	3.58	2.55	0.91	4.58	1.69	5.16	2.81	7.12	7.80	2.93	4.52	4.64	48.29
2007	3.35	1.45	4.29	1.77	0.96	2.91	4.85	2.84	3.40	3.02	1.49	4.06	34.39
2008	2.56	3.79	4.51	2.84	1.33	0.85	4.02	5.84	1.70	1.84	1.61	4.74	35.63
2009	2.40	1.87	4.07	3.54	9.18	6.41	2.88	3.69	8.17	5.50	5.26	9.16	62.13
h													

Yr	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annl
2010	7.00	3.35	4.18	2.24	4.89	1.75	3.54	3.47	4.15	2.94	5.49	1.26	44.26
2011	2.12	2.97	6.95	4.33	2.95	3.83	3.33	3.00	3.74	2.39	5.32	5.11	46.04
2012	3.85	1.59	2.72	4.66	5.82	1.68	5.78	3.39	5.93	4.01	0.85	4.38	44.66
2013	8.58	3.56	3.32	5.88	7.78	8.97	13.69	6.98	3.05	2.19	3.55	7.67	75.22
2014	2.33	3.02	2.30	5.09	3.77	5.39	4.93	3.95	5.87	4.03	3.83	2.40	46.91
2015	3.06	2.78	2.12	4.94	1.35	6.42	2.66	2.77	4.50	7.17	7.82	8.76	54.35
2016	3.29	5.69	1.56	2.50	1.84	2.53	4.39	6.65	0.58	0.52	1.54	2.31	33.40
2017	3.72	0.70	3.92	7.65	7.03	2.71	4.53	6.35	3.75	9.68	1.59	2.47	54.10
2018	4.04	5.57	3.11	4.64	14.68	2.57	6.58	10.41	4.00	5.85	7.16	10.87	79.48
2019	5.28	6.91	2.63	8.97	3.35	6.90	3.69	3.98	0.90	7.78	2.57	M1.31	54.27

Notes: Data missing in any month have an "M" flag. A "T" indicates a trace of precipitation. Data missing for all days in a month or year is blank.

Creation date: 2019-12-13

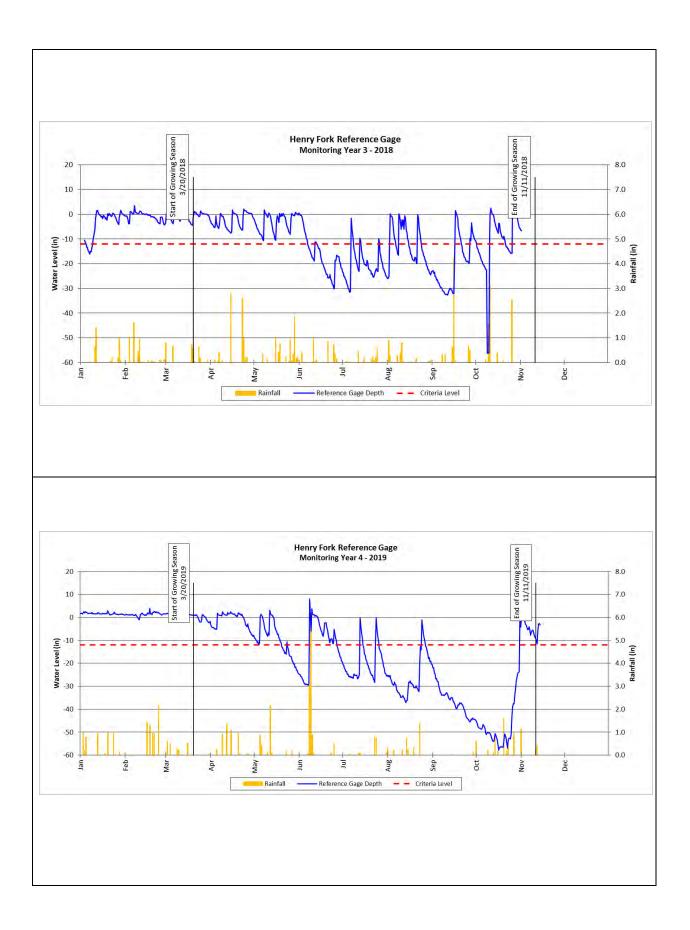


0.5 1 Miles

Ŵ

Catawba River Basin 03050103

Catawba County, NC



0 150 300 Feet

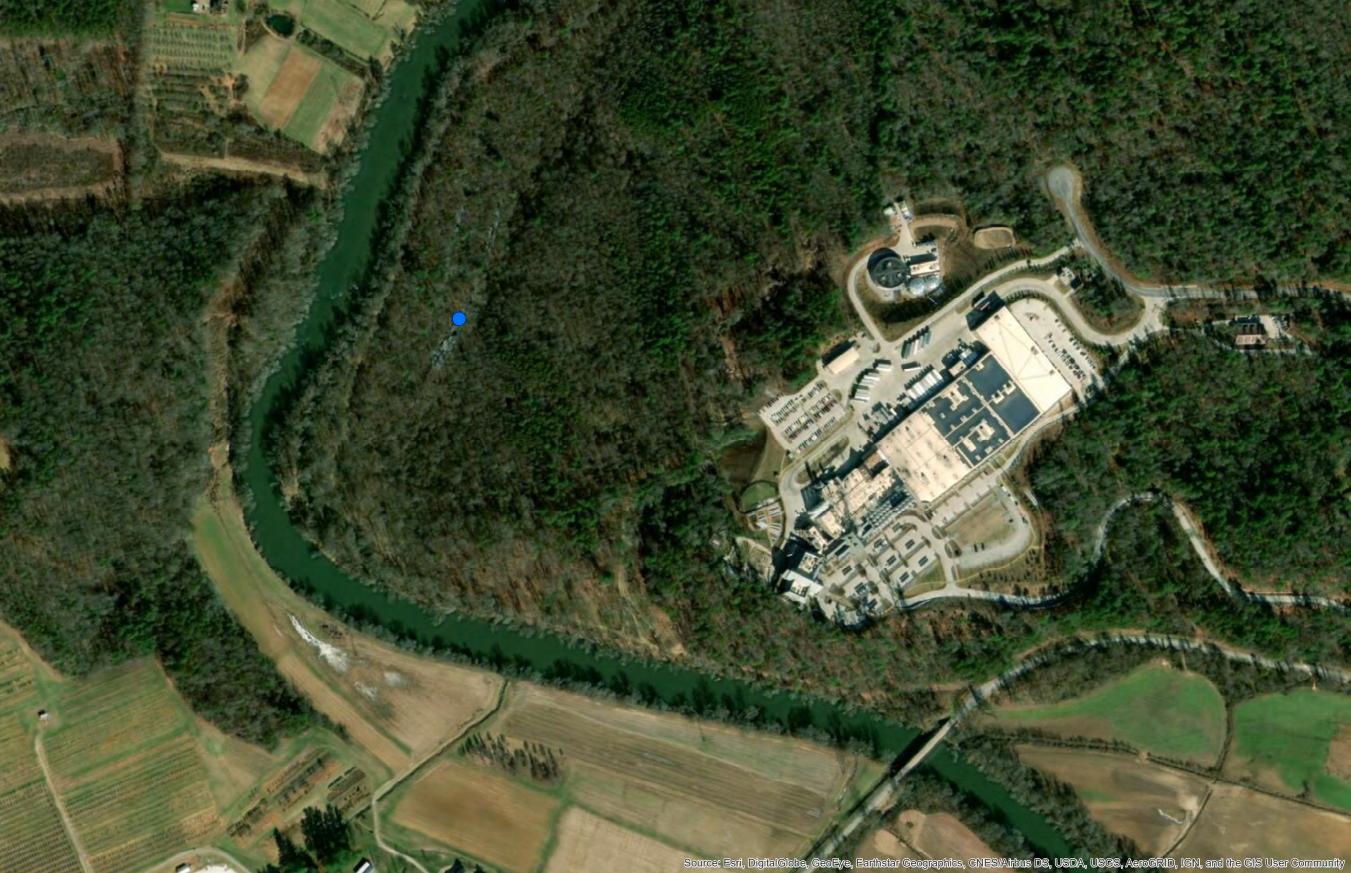
Ņ

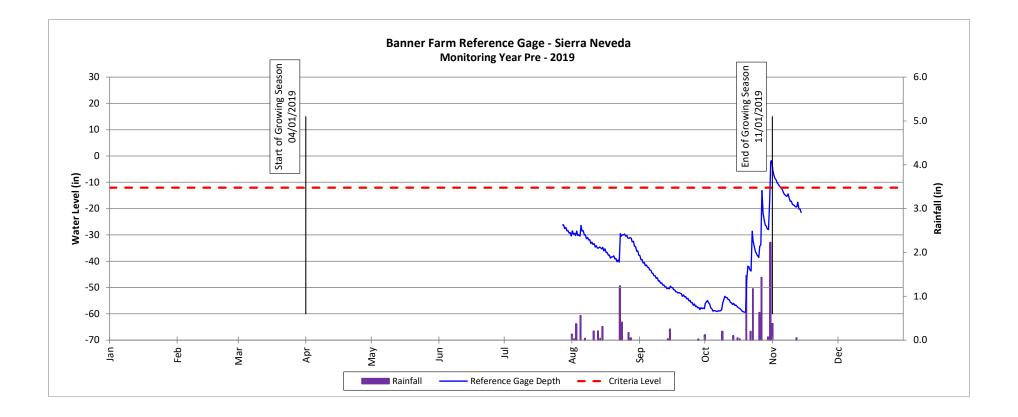
Appendix - Soils Map Reference Wetland Gauge Catawba River Basin 03050103

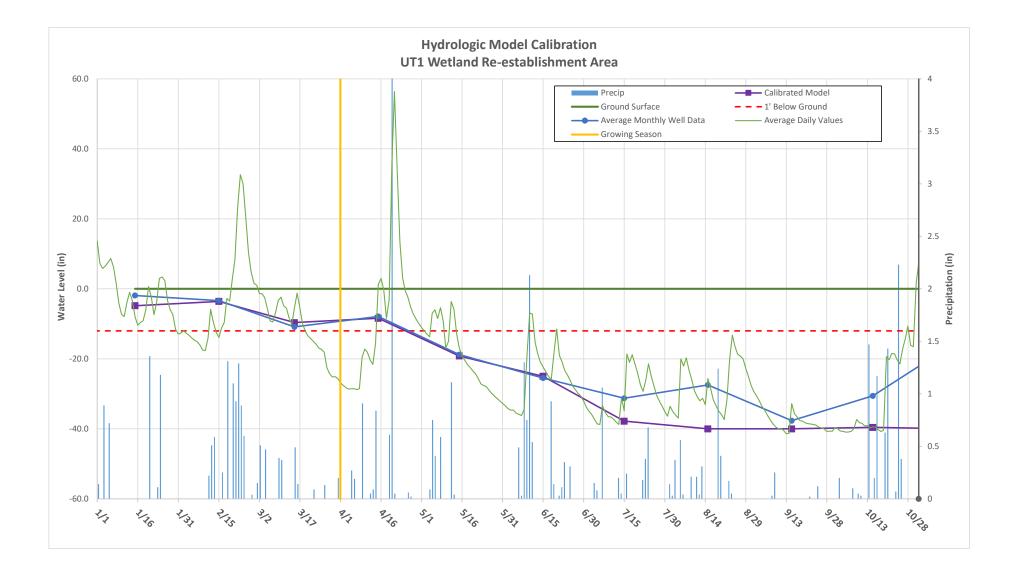
Banner Farm Mitigation Site Sierra Nevada Reference Well

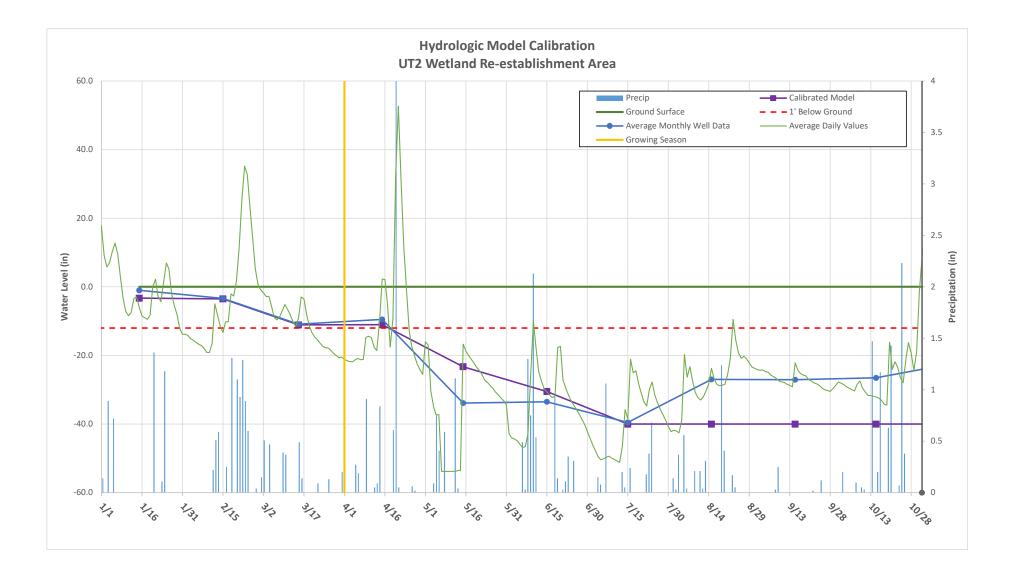
Forest Community:

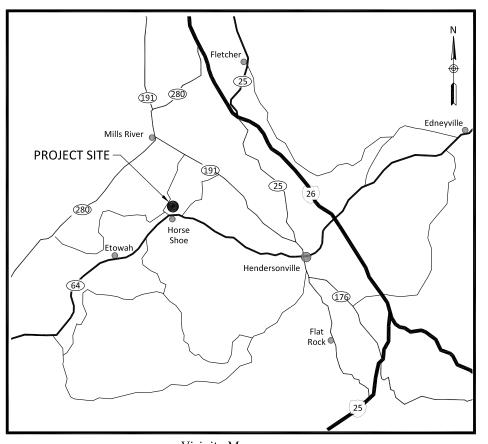
Tree Stratum: Beech Tree – Fragus grandifolia Tulip Poplar – Liriodendron Tulipifera White Oak – Quercus alba Red Maple – Acer rubrum Mockernut hickory – Carya tomentosa Sycamore – Platanus occidentalis Under Story: American Holly – Ilex opaca River Cane – Arundinaria gigantea Red Maple – Acer rubrum Sycamore – Platanus occidentalis Ground Cover: Greenbrier – Smilax spp, Sedge – Carex spp.


Soils:


0"-7.2" - 10YR 4/3, Redox 20%, 7.5YR 5/8, Silt Clay loam 7.2"-33.6" - 10YR 3/2, Sandy loam 33.6"-72" – 7.5YR 3/1, Sandy Clay loam


Location (lat/long): 35.4344, -82.5575

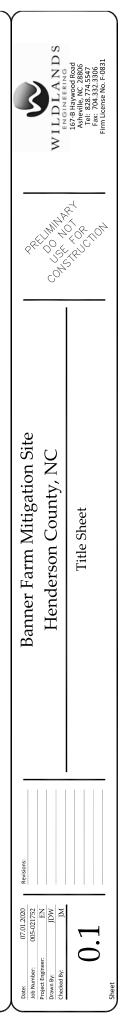

Site Photos:

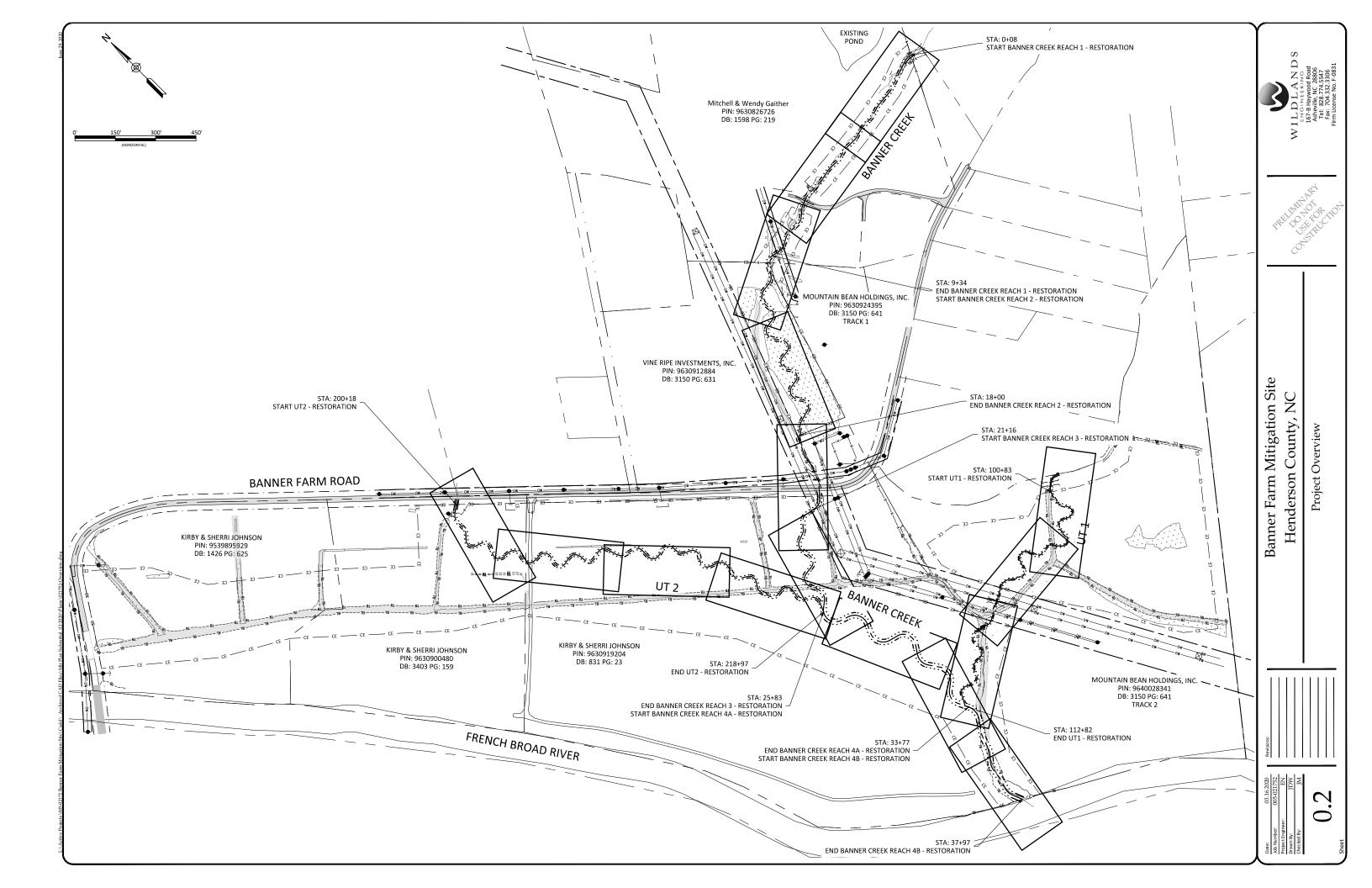


APPENDIX 8 Preliminary Design Plans

Banner Farm Mitigation Site Henderson County, North Carolina for NCDEQ Division of Mitigation Services

Vicinity Map


PRELIMINARY PLANS **ISSUED FOR FINAL MITIGATION PLAN** JULY 1, 2020


Sheet Ir
Title Sheet
Project Overview
General Notes and Symbols
Typical Sections
Stream Plan and Profile Banner Creek UT 1 UT 2
Wetland Grading Plan
Planting
Erosion and Sediment Control
Details
Project Dir

Engineering: Wildlands Engineering, Inc License No. F-0831 167-B Haywood Road Asheville, NC 28806 Eric Neuhaus, PE 865-207-8855

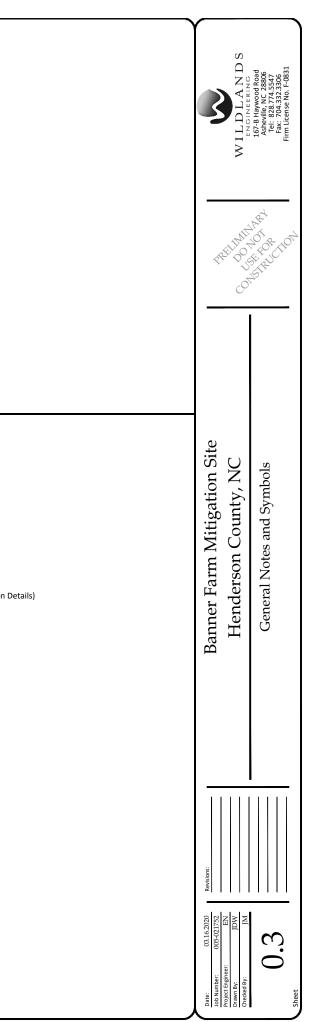
Surveying: Kee Mapping and Surveying P.O. Box 2566 Asheville, NC 28802 Brad Kee, PLS 828-575-9021

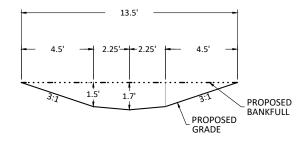
Index	
	0.1
	0.2
	0.3
	1.1-1.5
	2.1.1-2.1.9 2.2.1-2.2.3 2.3.1-2.3.4
	3.1-3.5
	4.1-4.5
	Reserved
	6.1-6.7
Directory Owner: NCDEQ Division of Mitigati 5 Ravenscroft Drive Asheville, NC 28801 Matthew Reid 828-273-1673	, Ste 102
DMS Project No. 10	0062
French Broad River HUC 06010105	Basin
USACE Action ID: SAW-2018-01153	

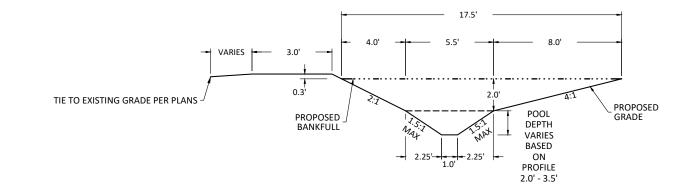
Existing Features

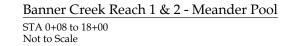
Existing Features		Proposed	d Features	Proposed S	Proposed Structures				
	 Existing Thalweg 	<u> </u>	 Proposed Stream Alignment 	O	Proposed Log Sill				
	 Existing Property Line 		 Proposed Bankfull 	0					
100	 Existing Major Contour 	100	 Proposed Major Contour 		Proposed Log or Rock				
	 Existing Minor Contour 		Proposed Minor Contour	0 ⁰ 0	Proposed Rock Sill				
OWOW	 Existing Overhead Wire/Utility 	CE CE CE	 Proposed Conservation Easement 						
ب 🔀 🖉	Existing Power Pole/Utility Tower/Guy Wire		 Proposed Internal Easement Crossing 		Proposed Cover Log				
	Existing Utility Right-of-Way				Proposed Various Co				
_ · · ·	 Existing Road Right-of-Way 				Note: Text Below Riff CR - Constructed Riff				
	 Existing Top of Bank 			CR-CR					
x x	 Existing Fence 				Proposed Brush Toe				
	Existing Stormwater Pipe or Culvert								
	Existing Road			<u> </u>	Proposed Permanent				
ψ ψ ψ ψ ψ ψ ψ ψ ψ 	Jurisdictionally Delineated Wetland				~				
	Surveyed Tree (> 12" Diameter)				Proposed Wetland D				
	Existing Culvert or Pipe								

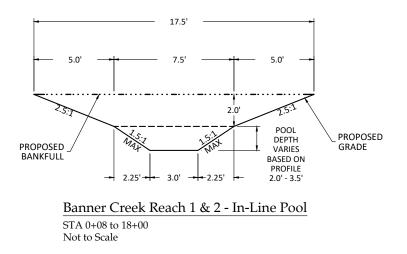
Proposed Features

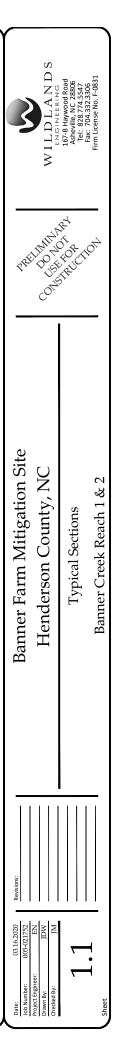

r Rock J-Hook Sill

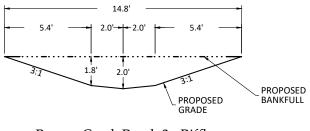

ous Constructed Riffles Per Plans ow Riffle in Plan view signifies riffle type (See Sheet 6.1 for Construction Details) ed Riffle, CH - Chunky Riffle, RR - Rock and Roll Riffle, JR - Jazz Riffle

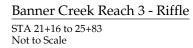

and Ditch Plug

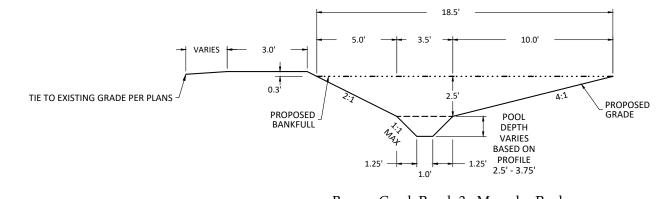

Proposed Fill in Existing Ditch



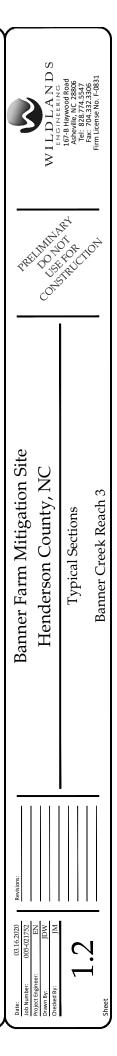


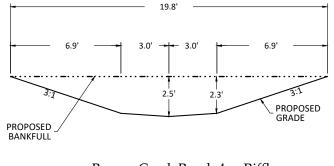

Banner Creek Reach 1 & 2 - Riffle STA 0+08 to 18+00 Not to Scale

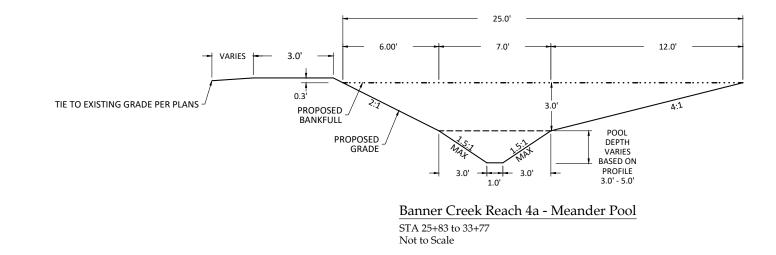


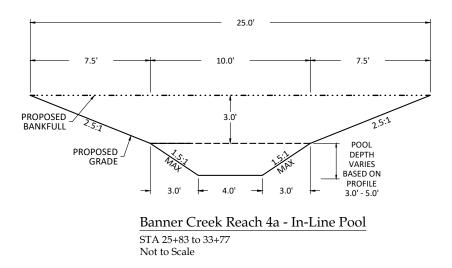


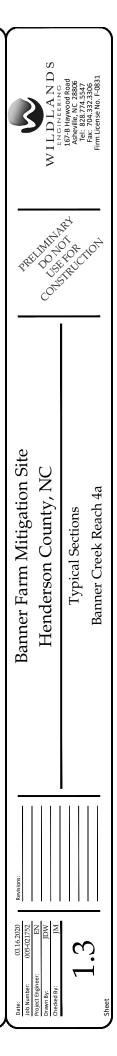


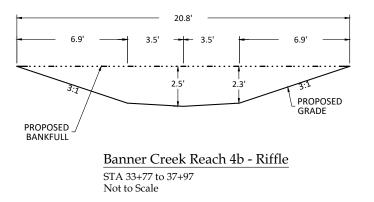


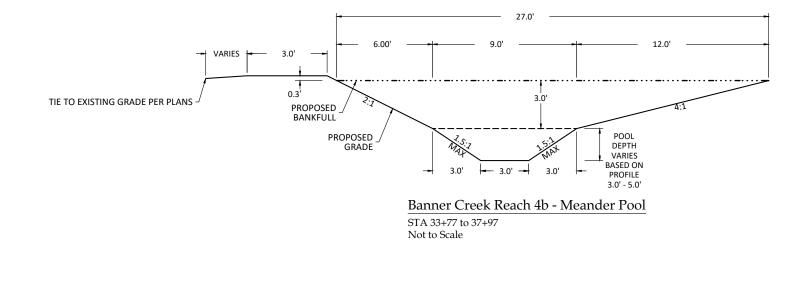


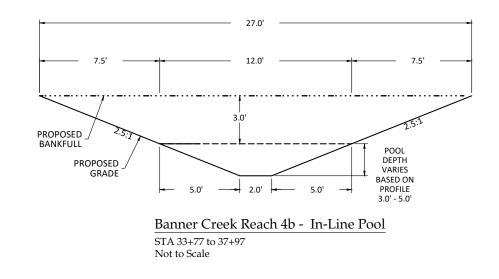


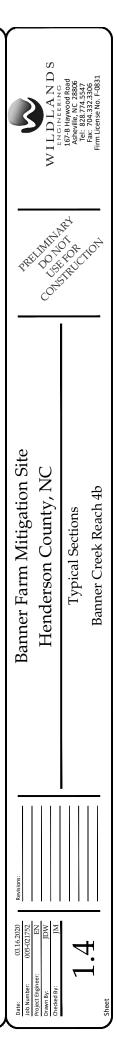


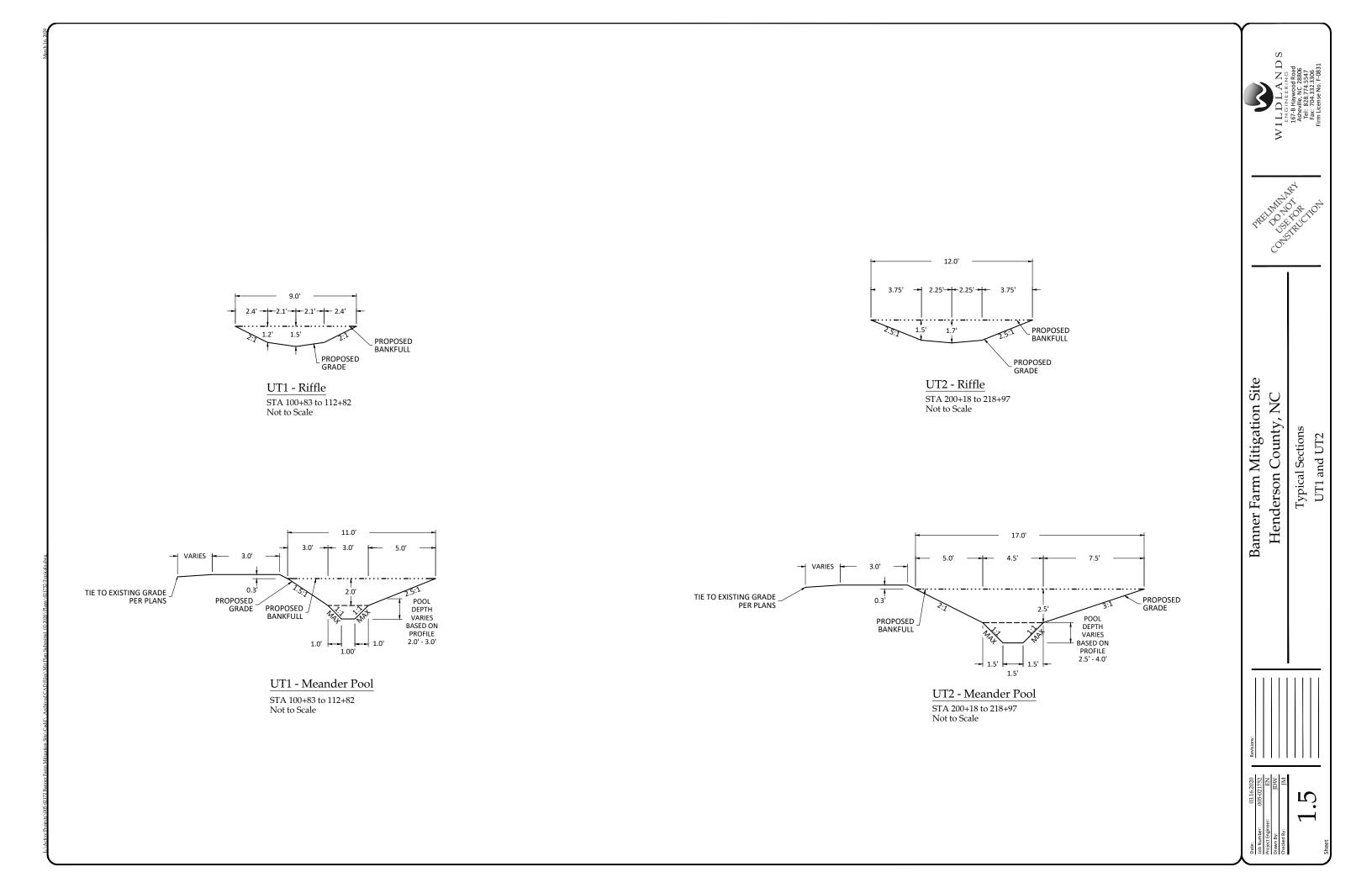


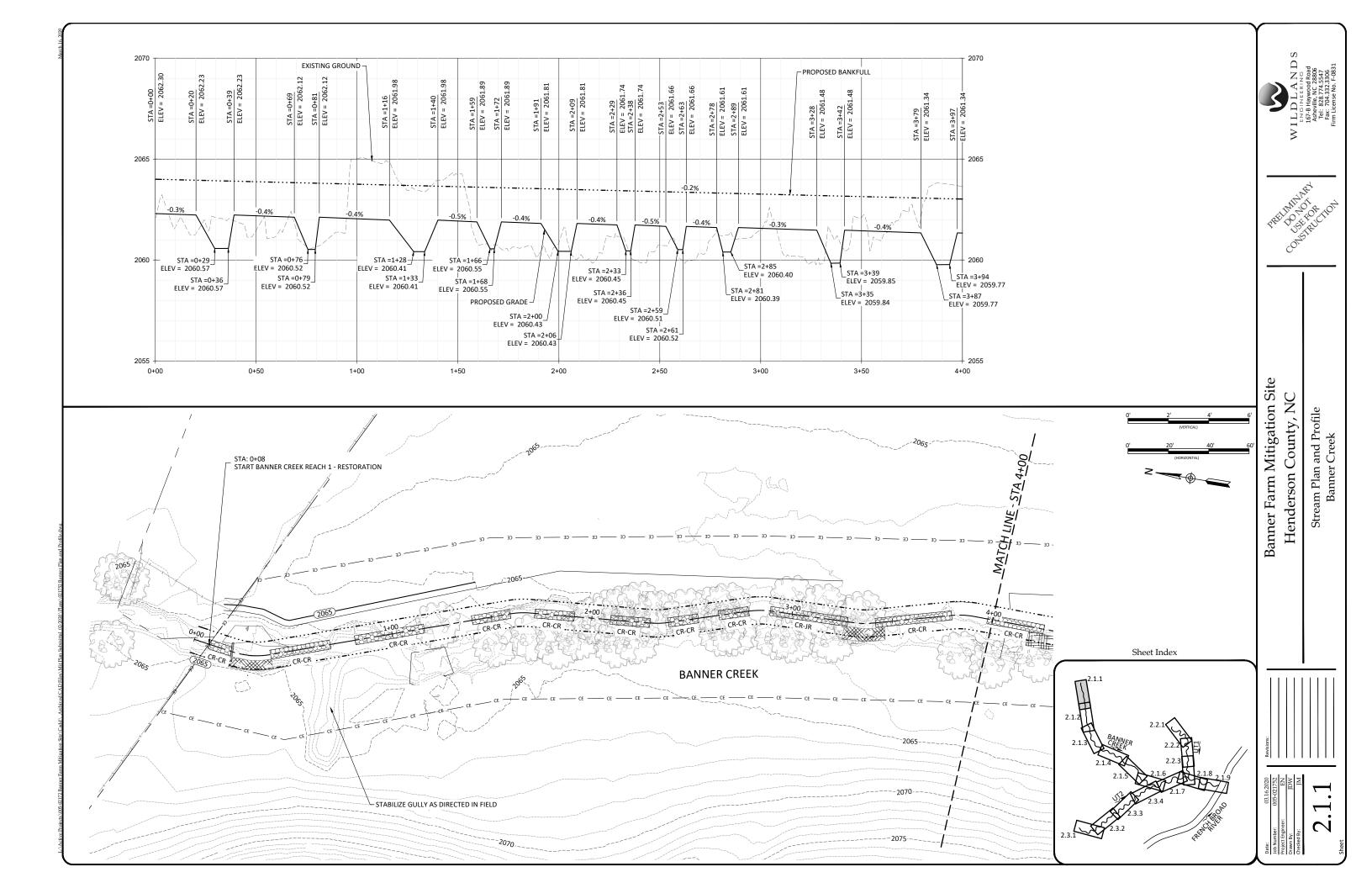


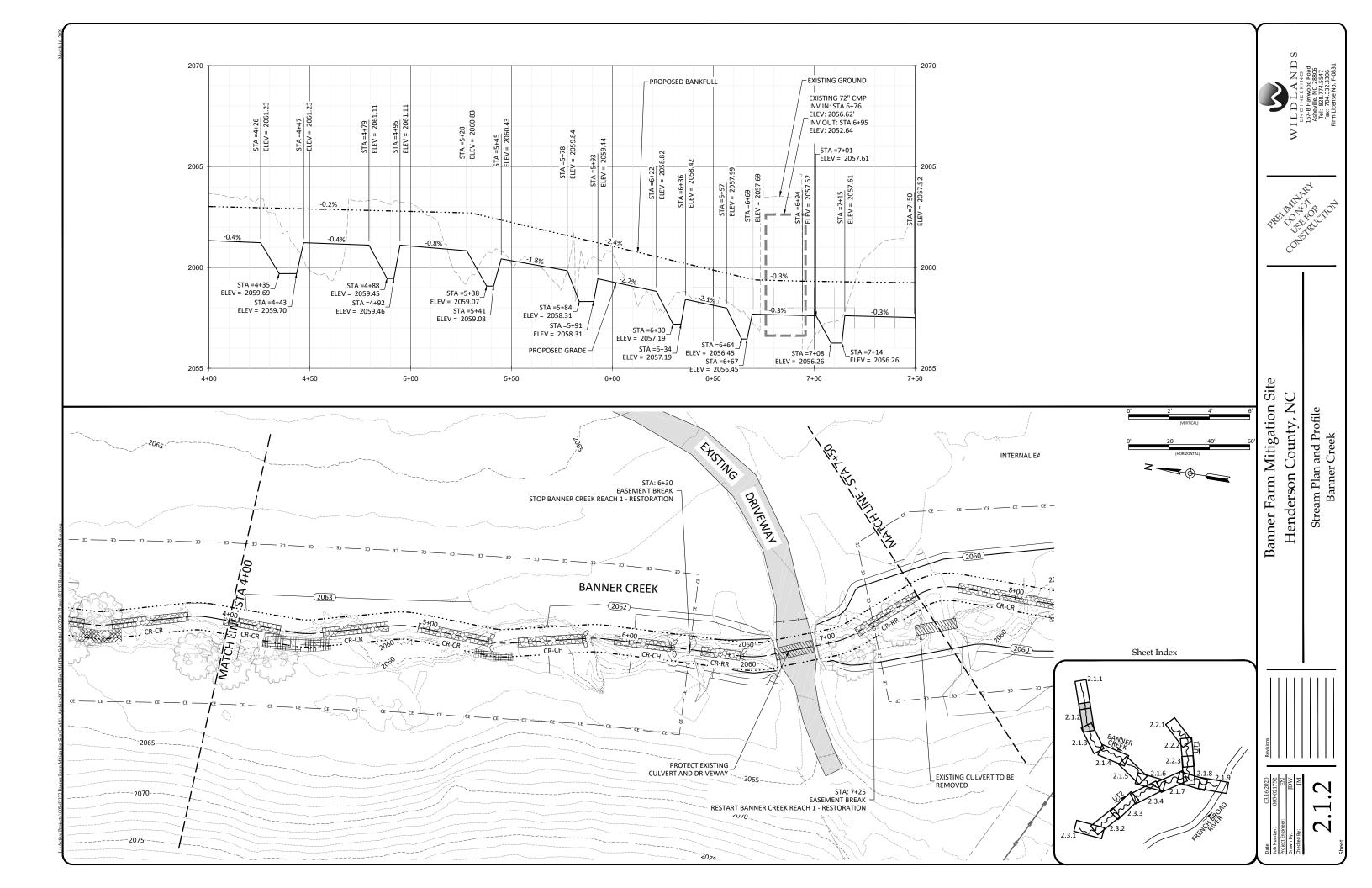


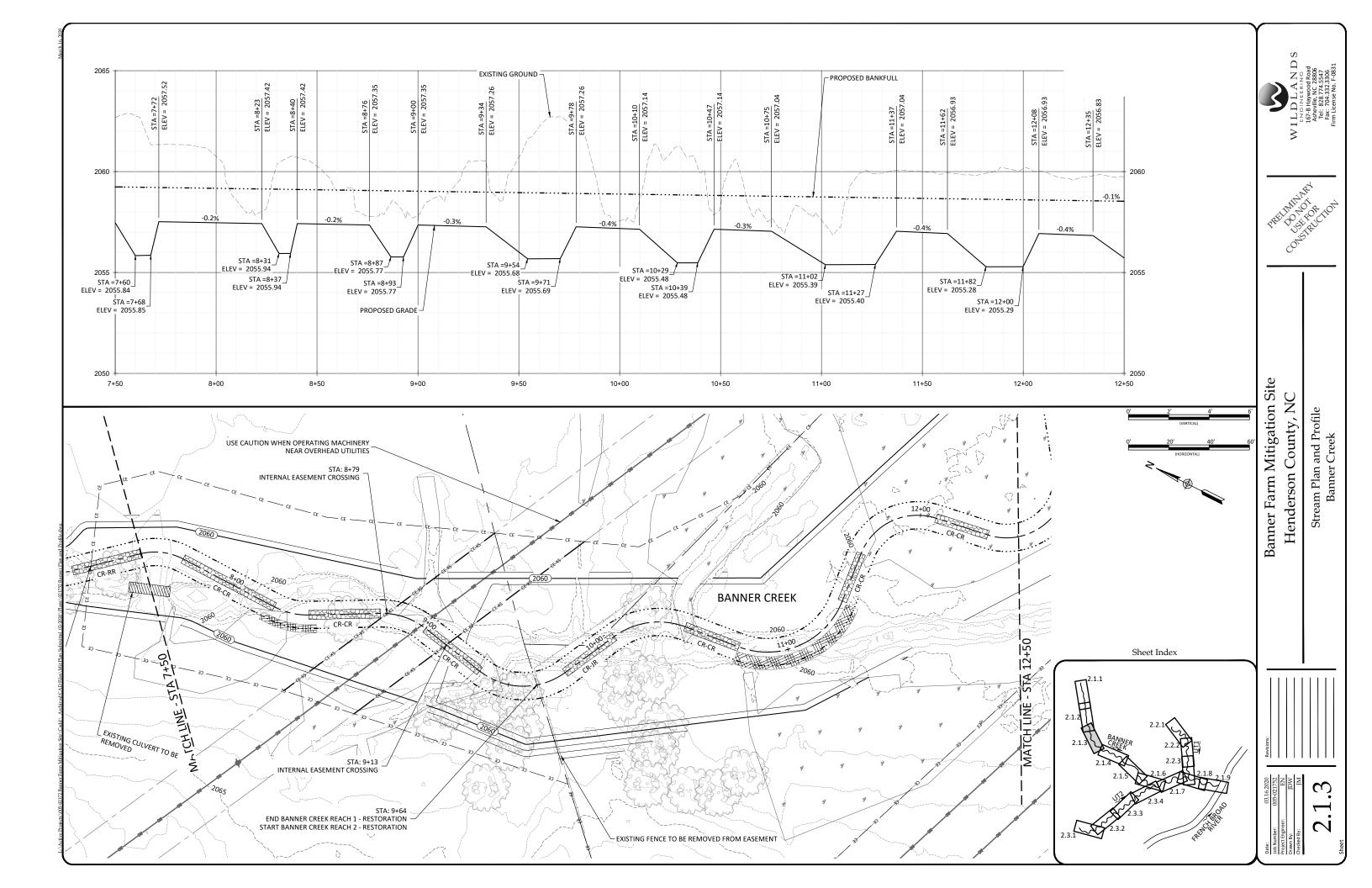


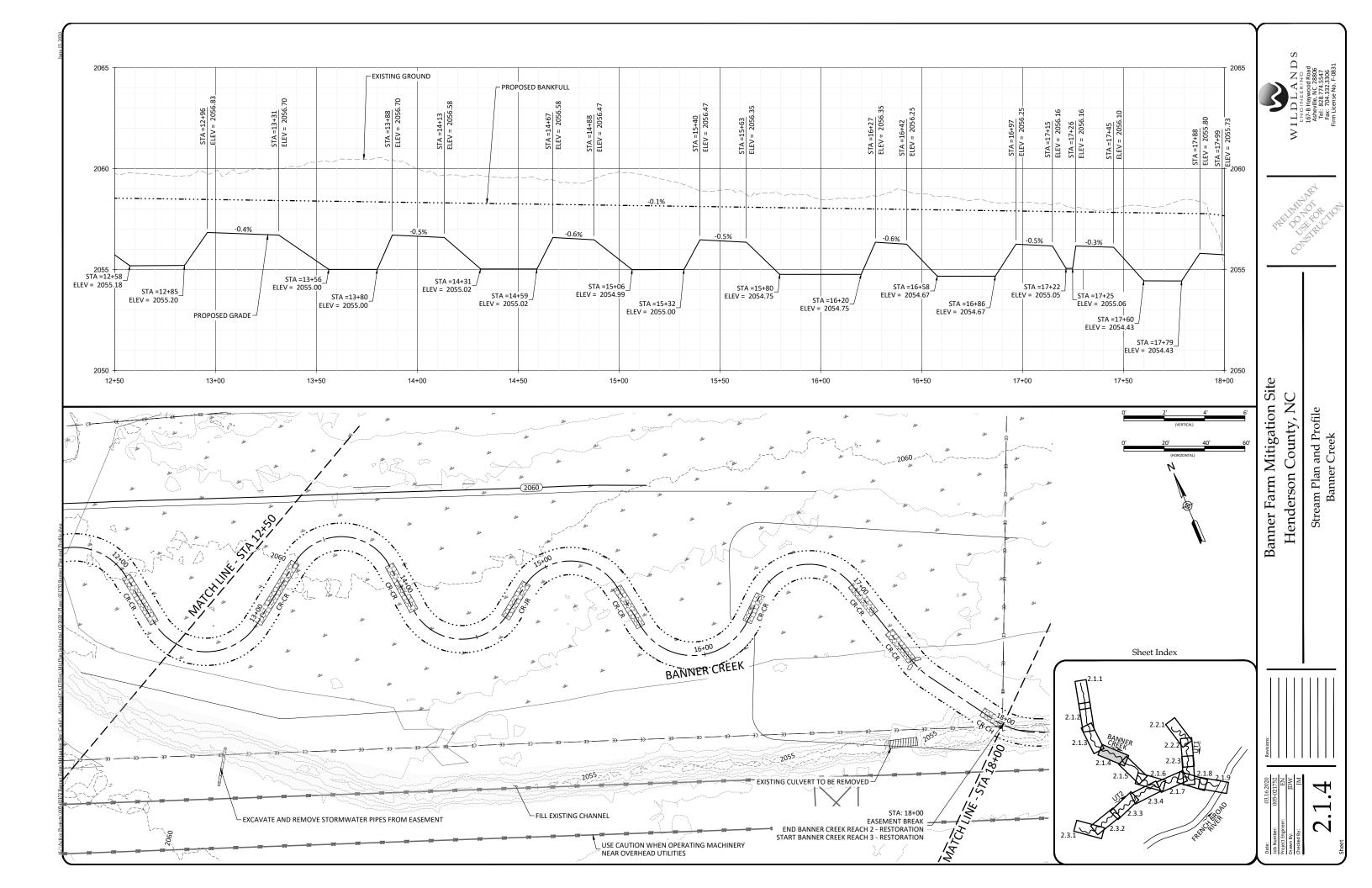


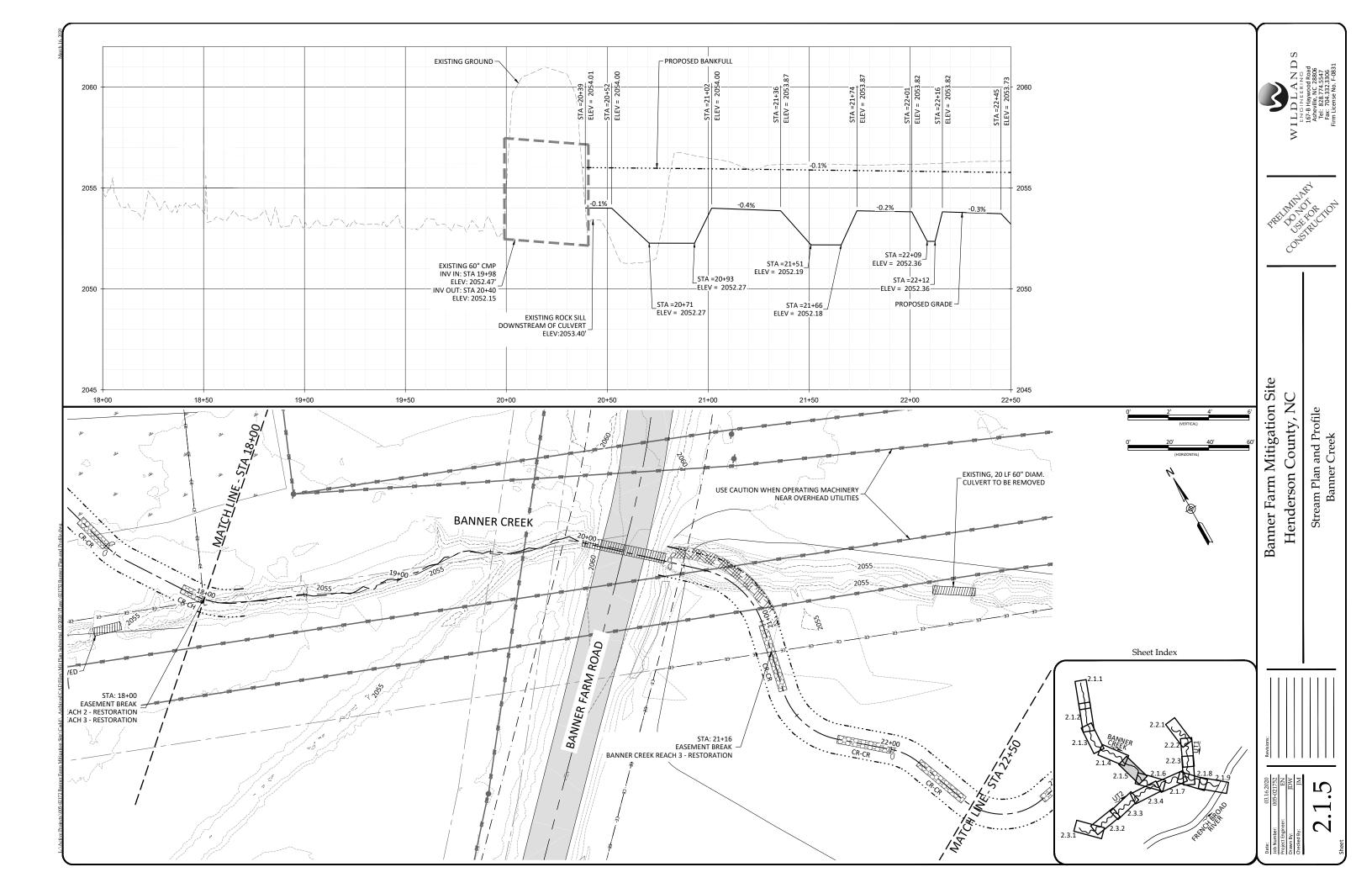


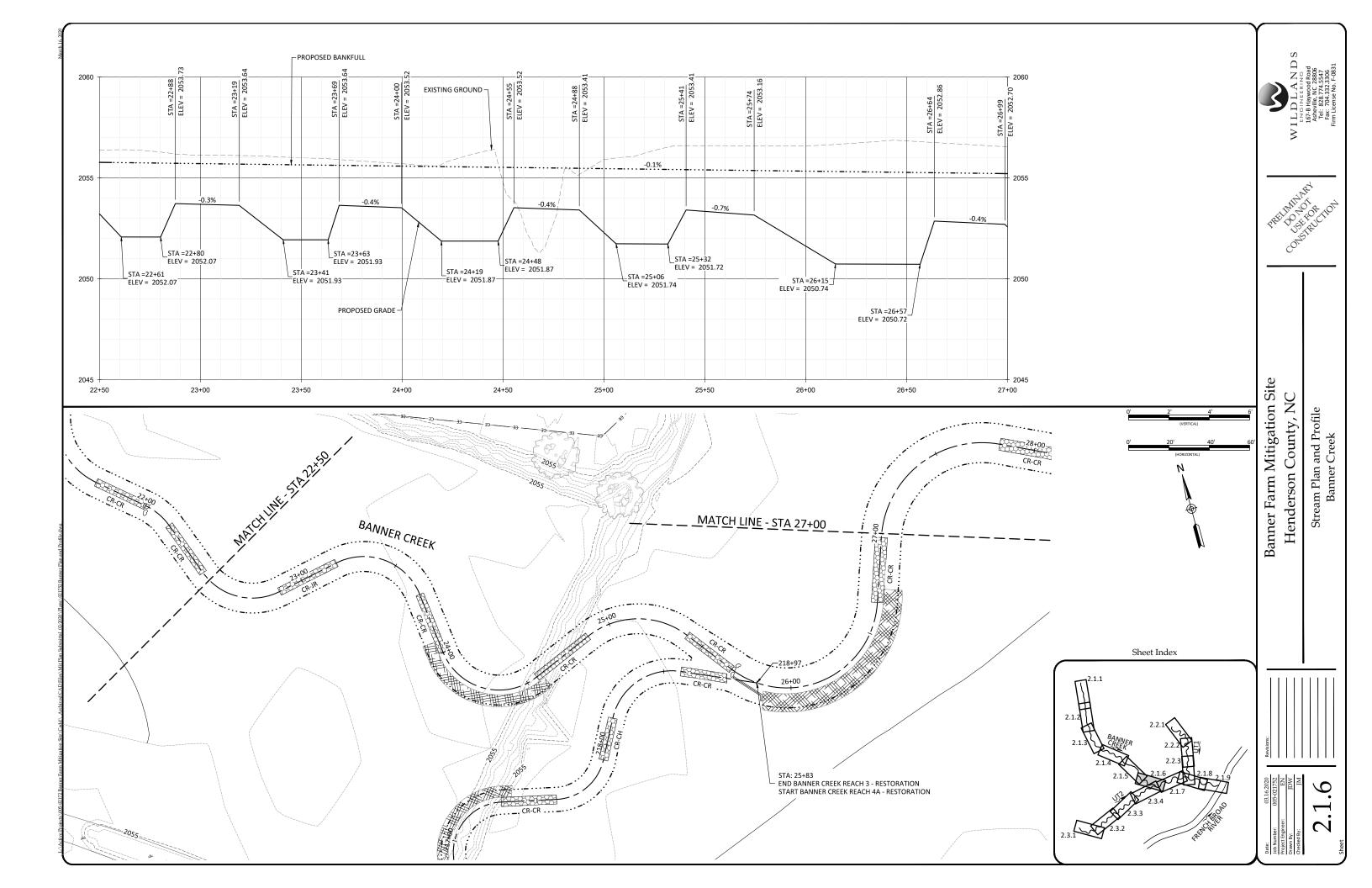


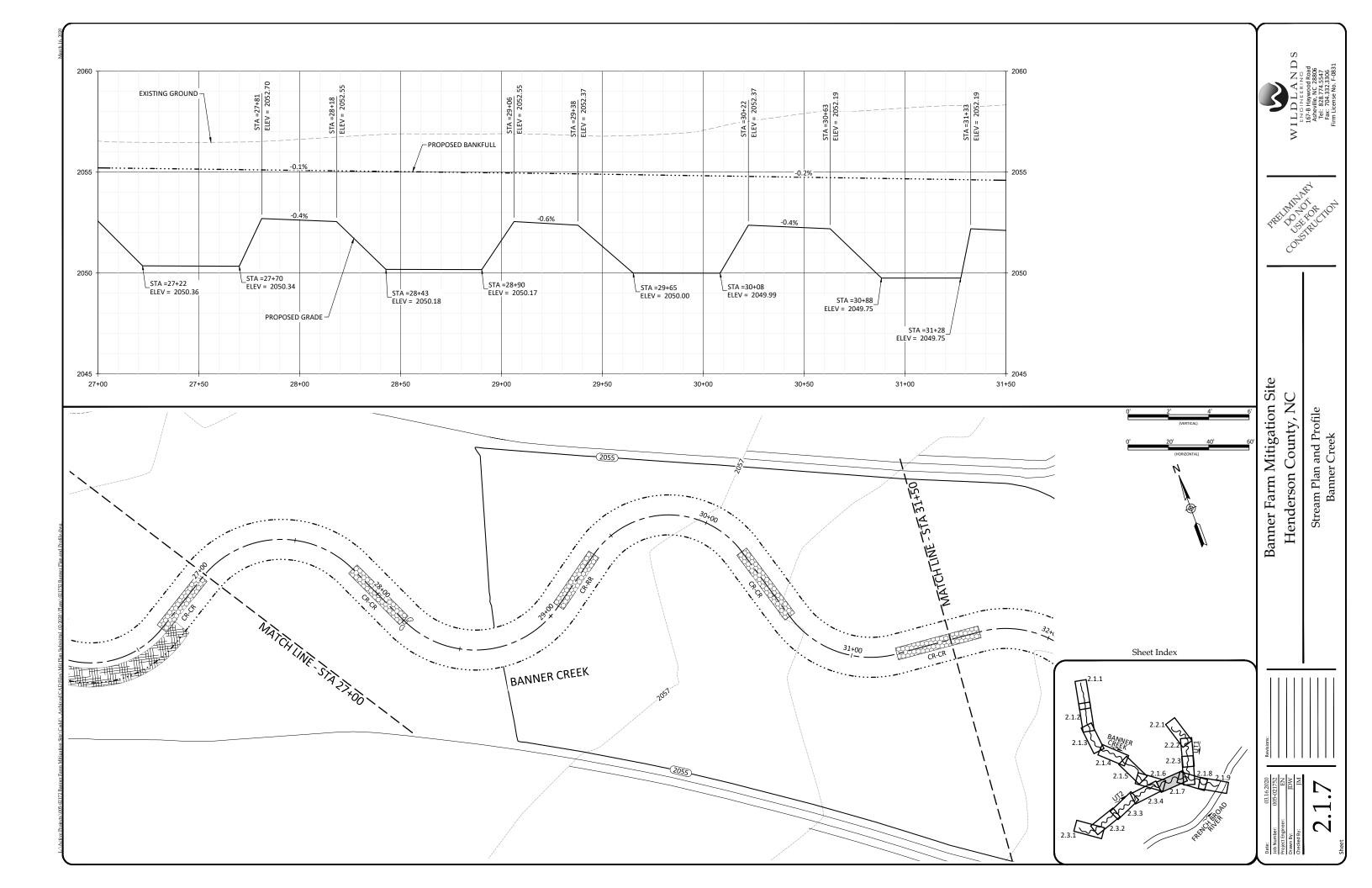


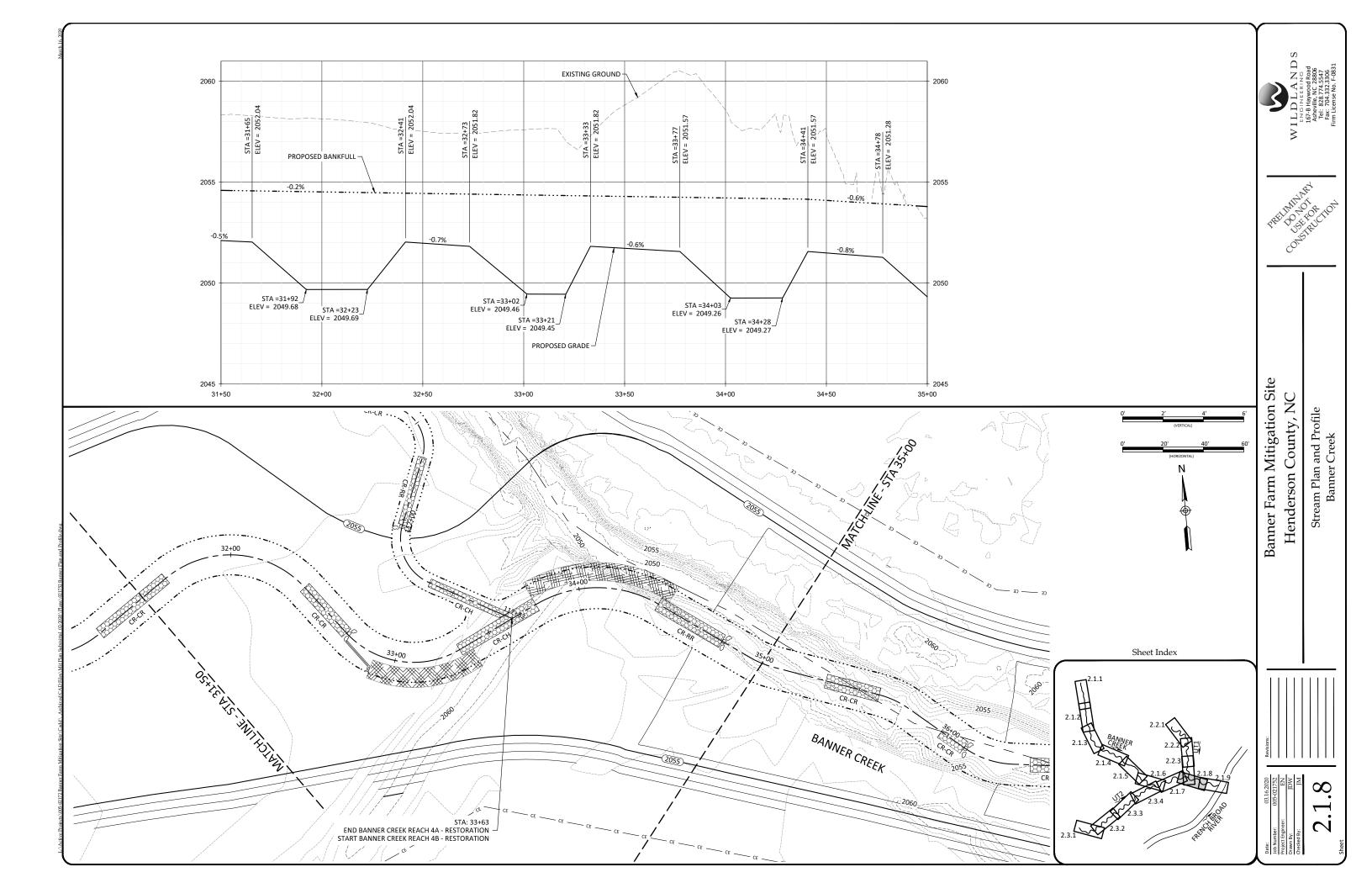


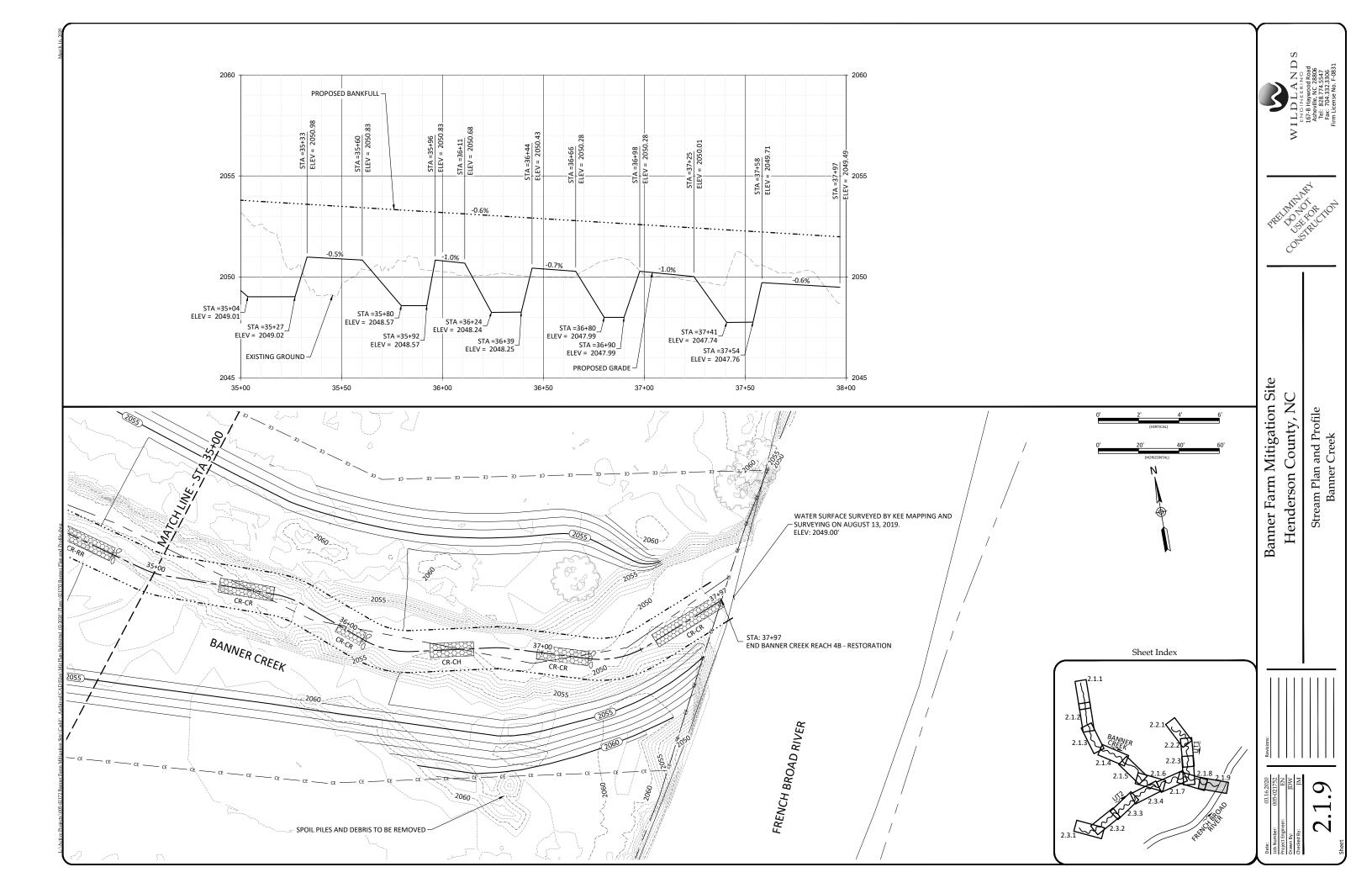


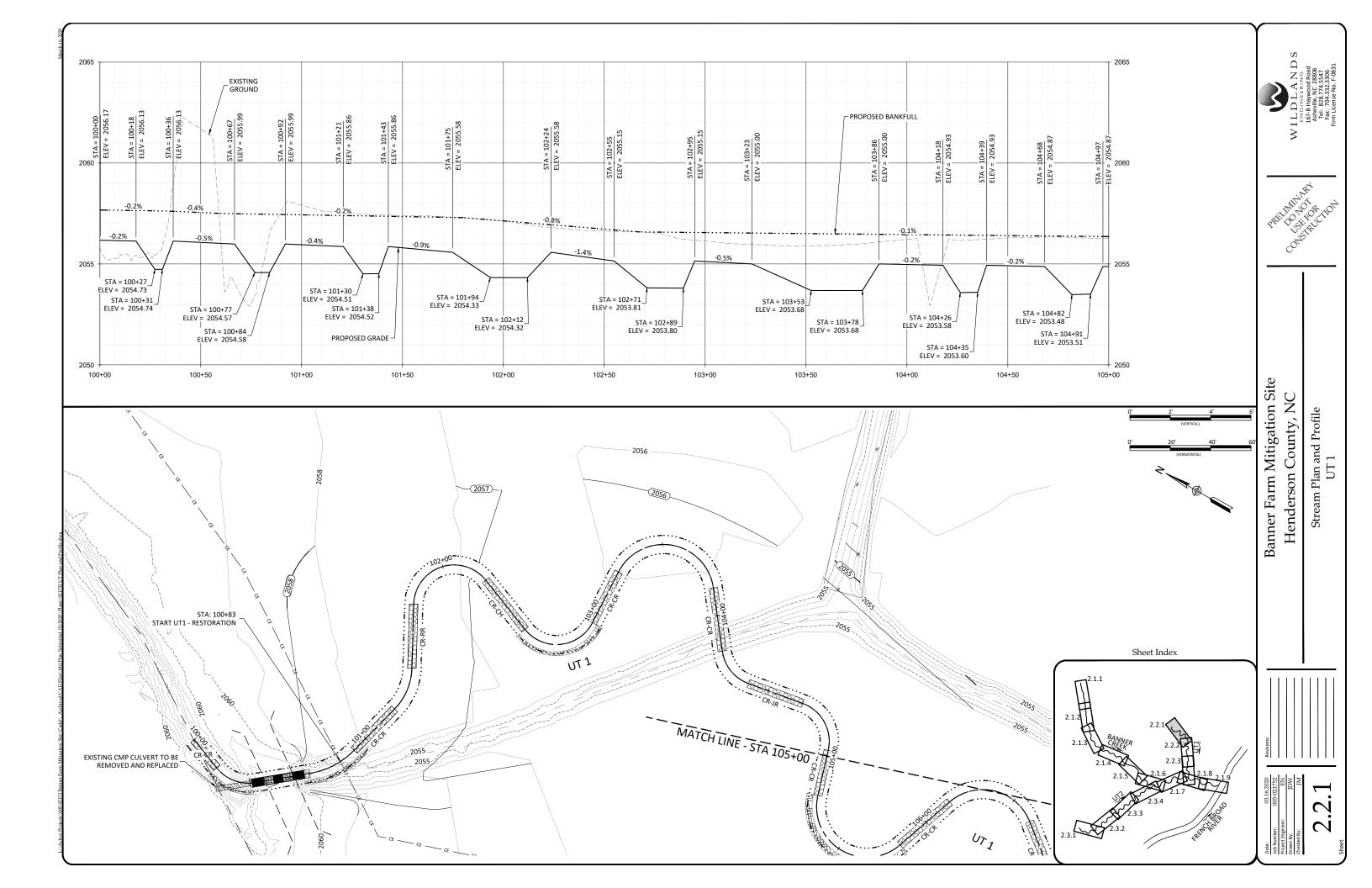


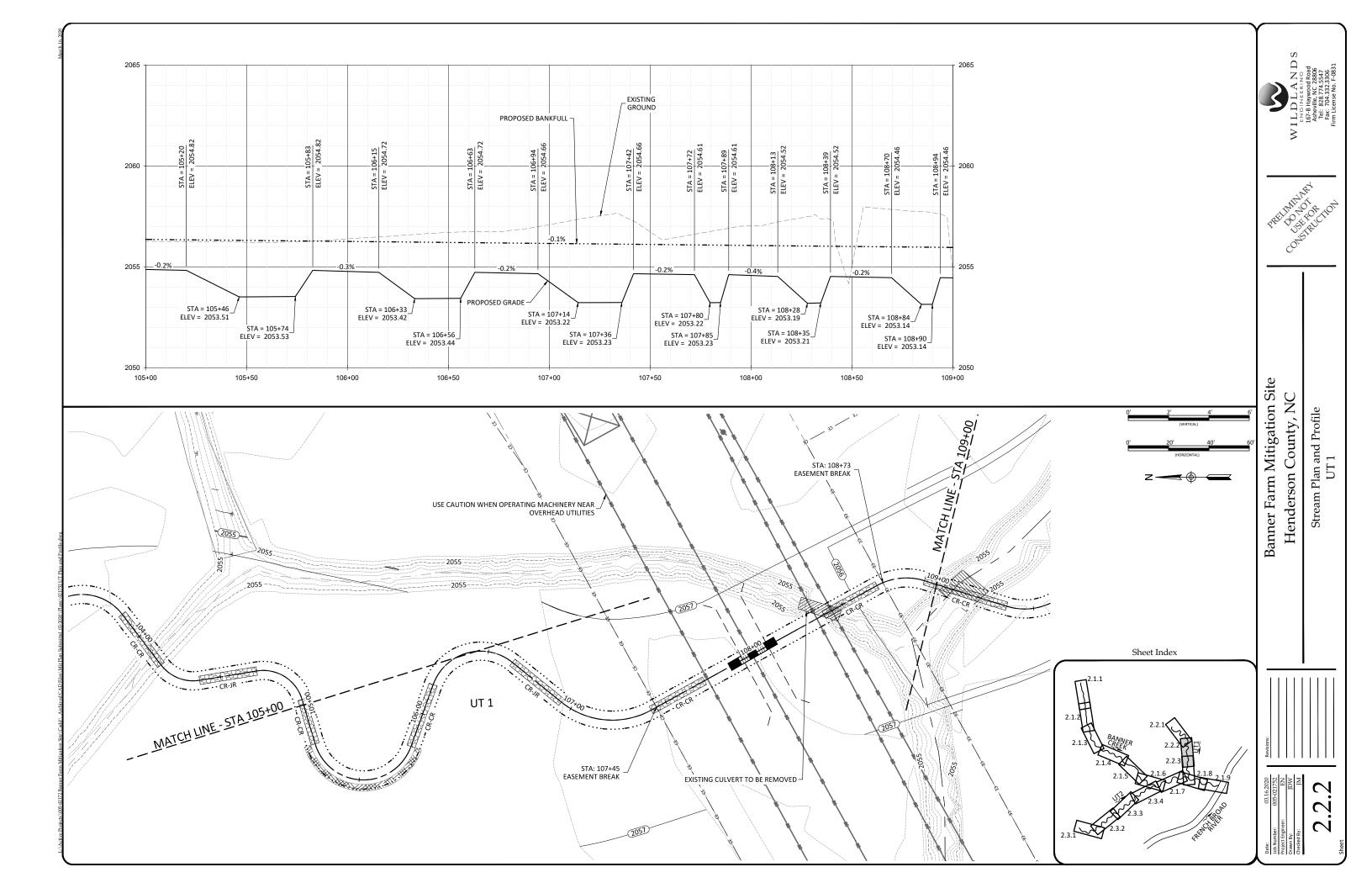


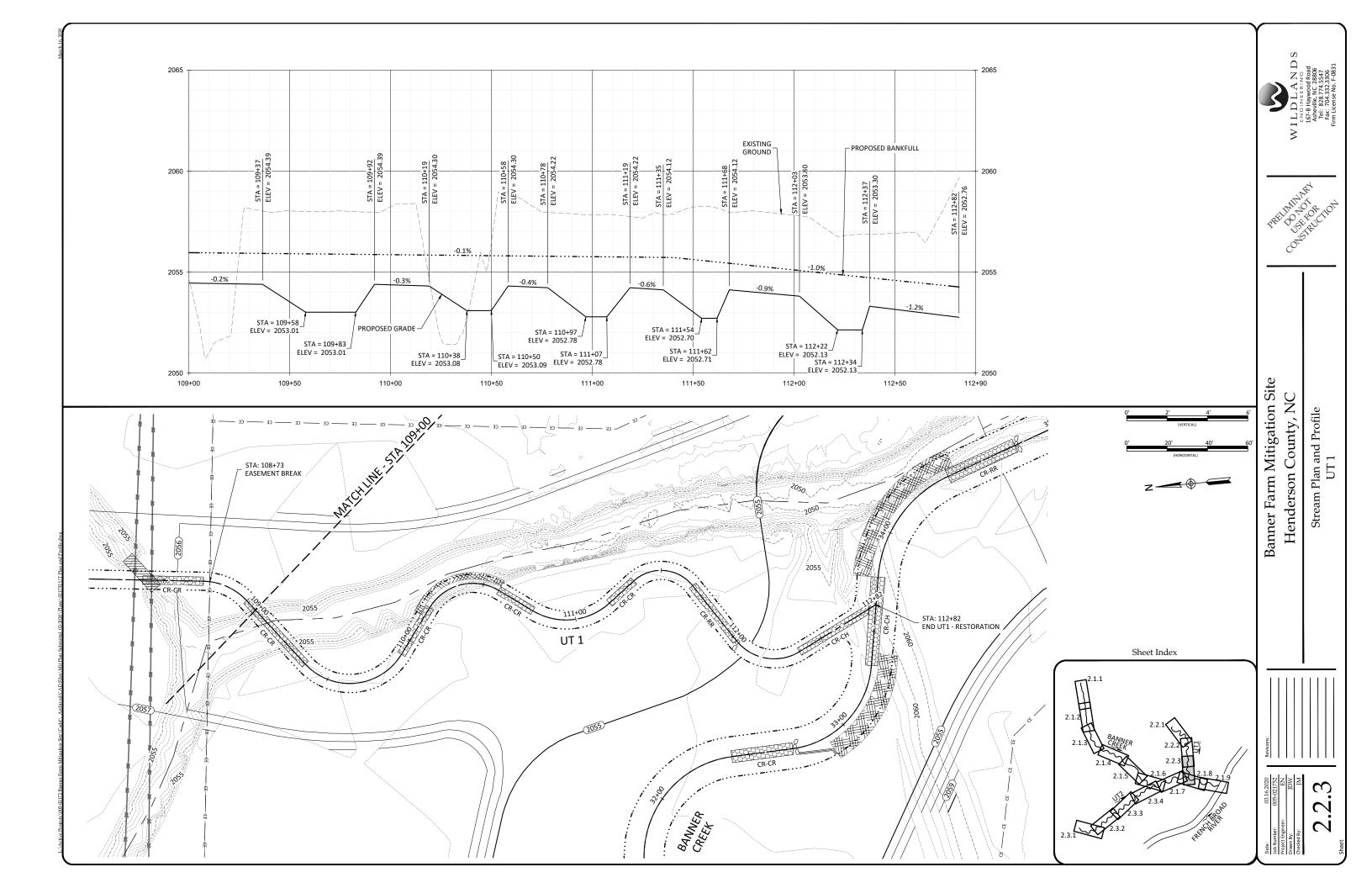


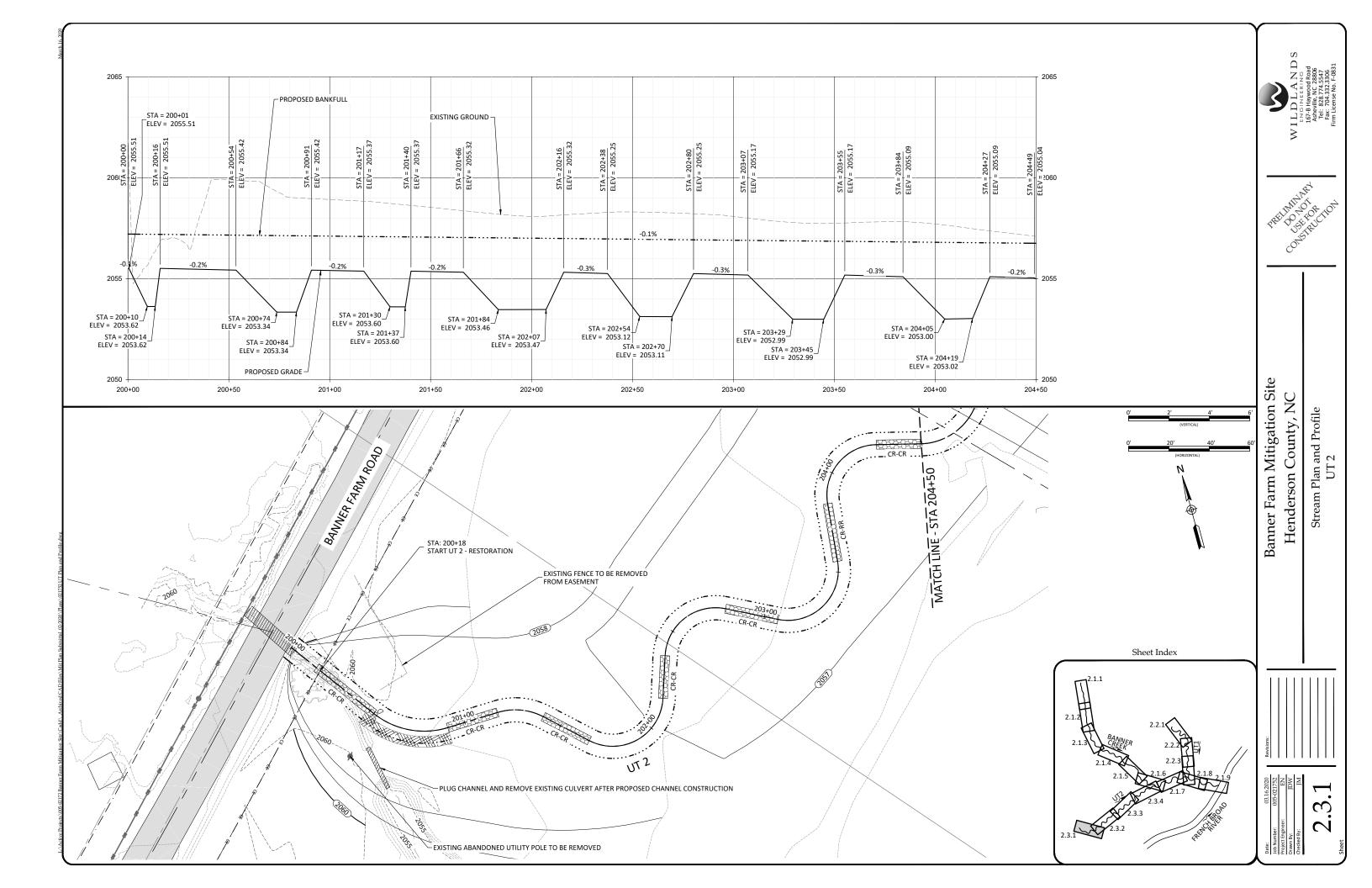


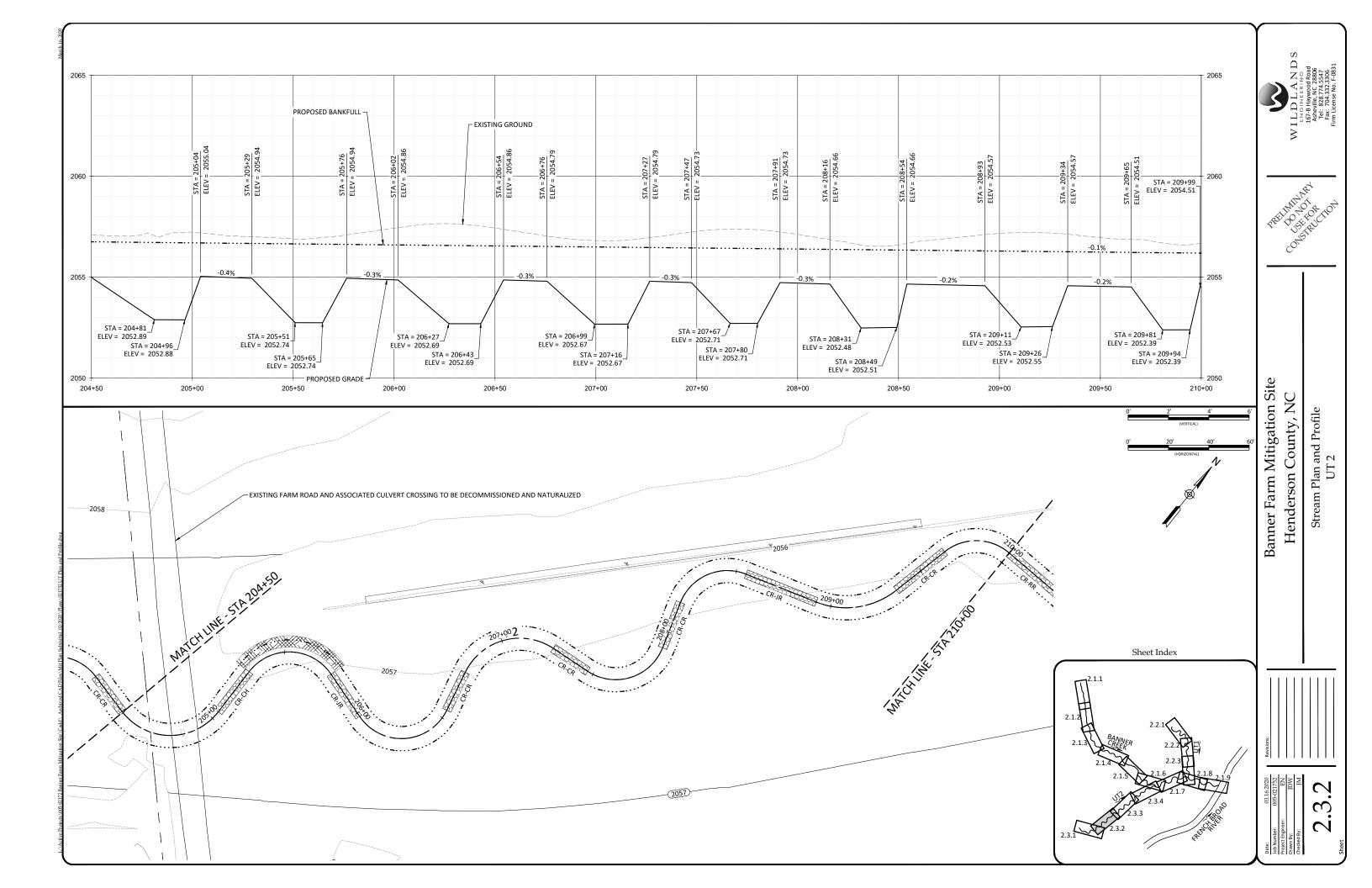


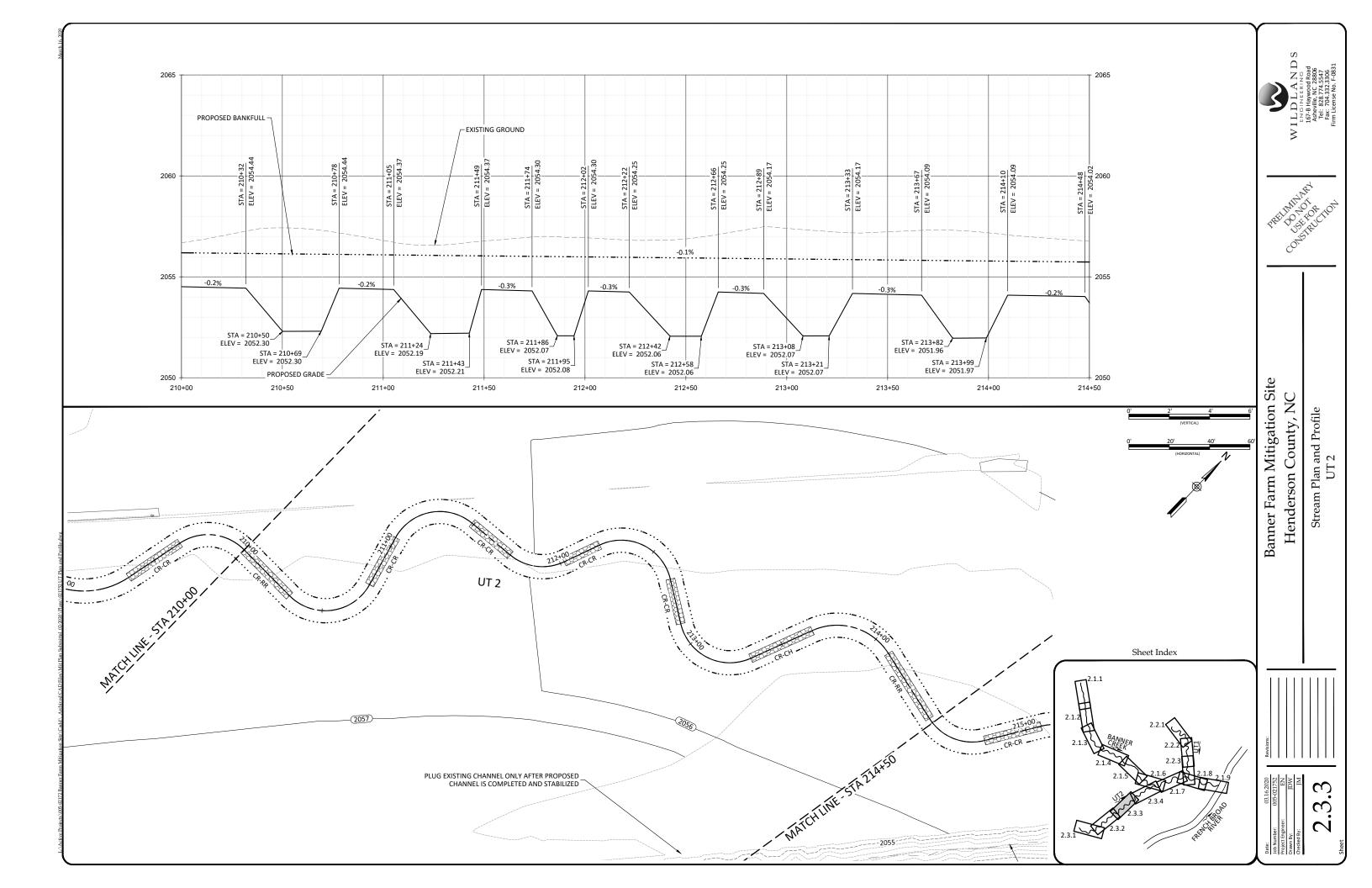


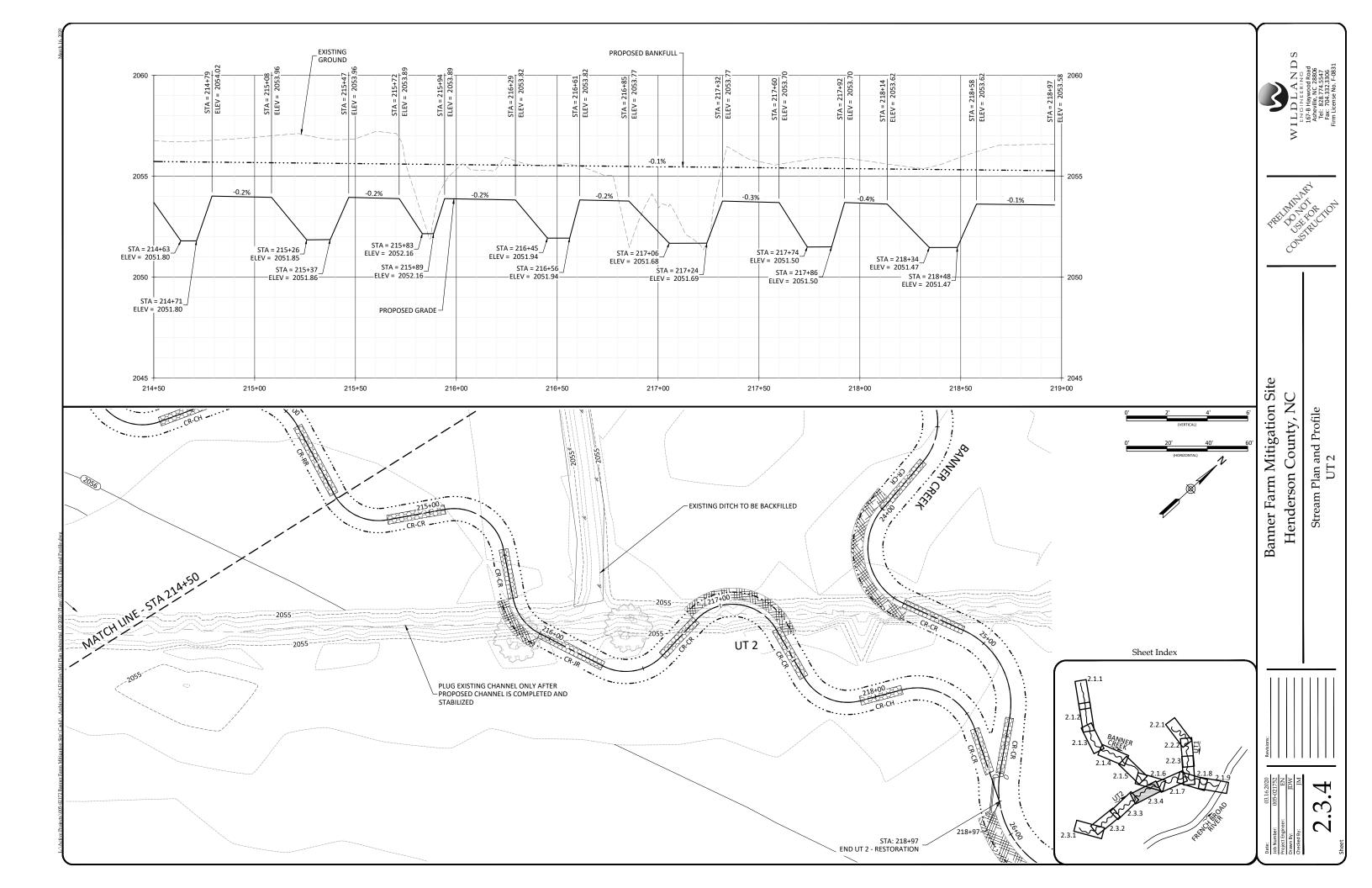


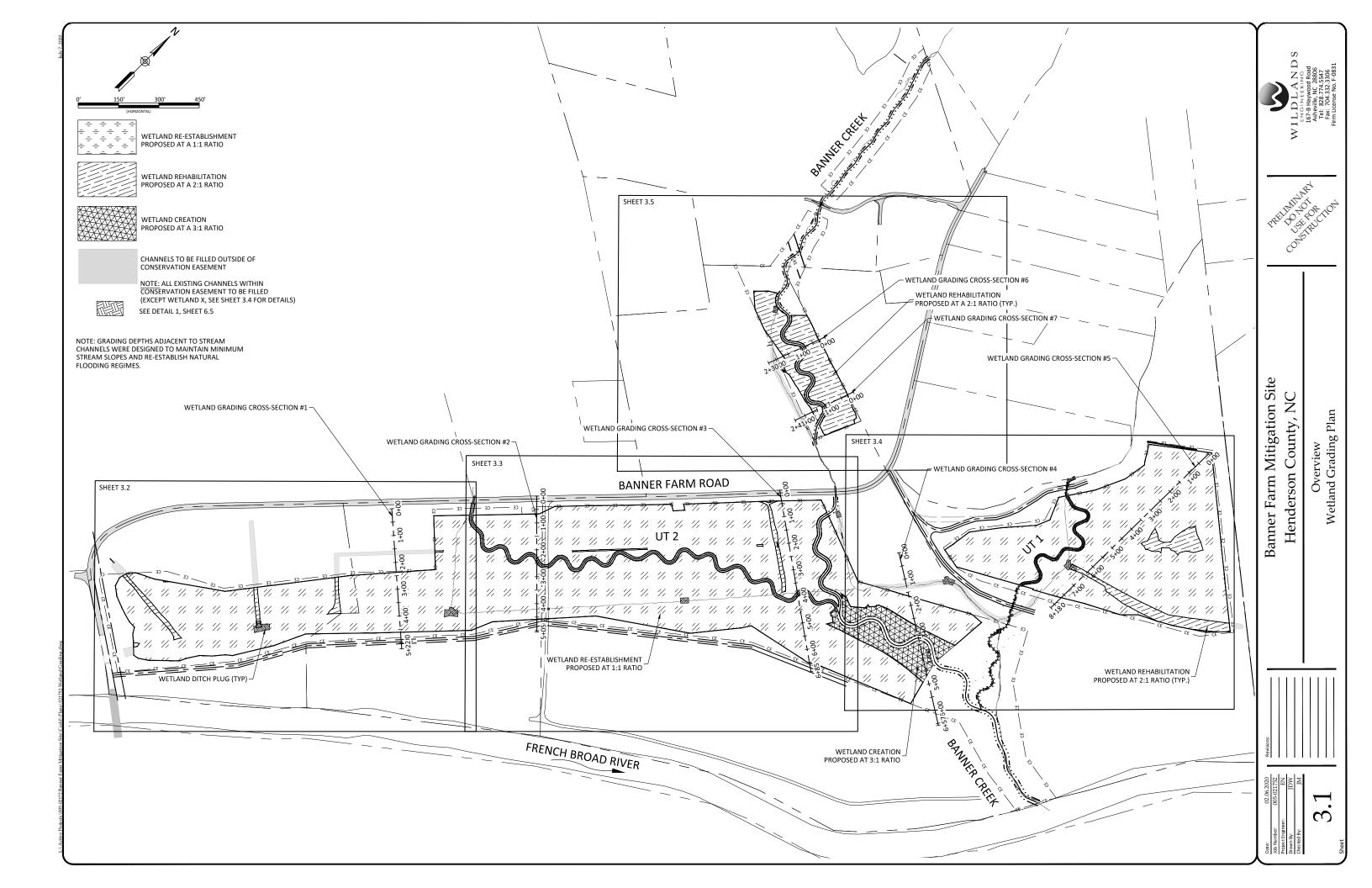


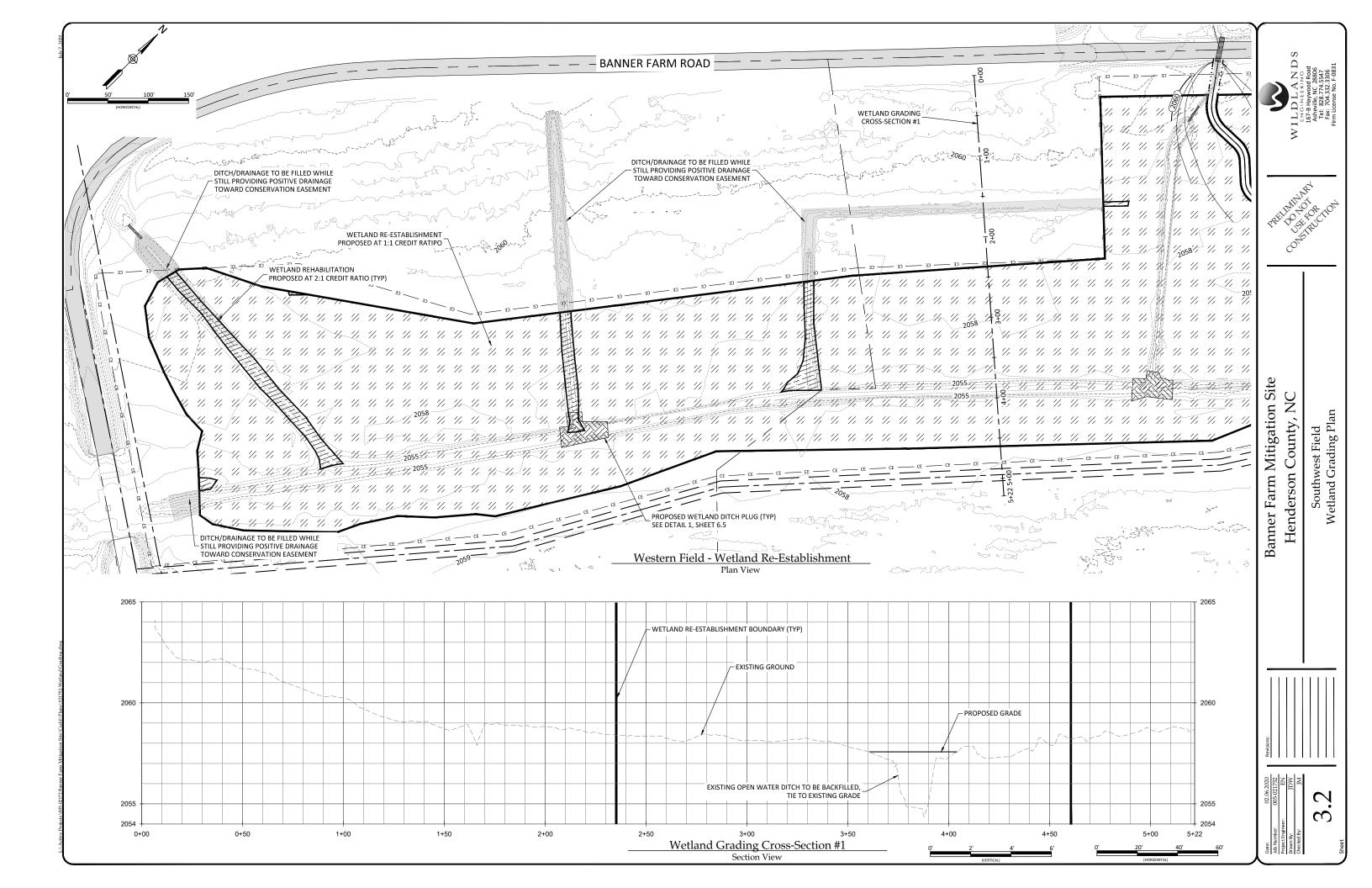


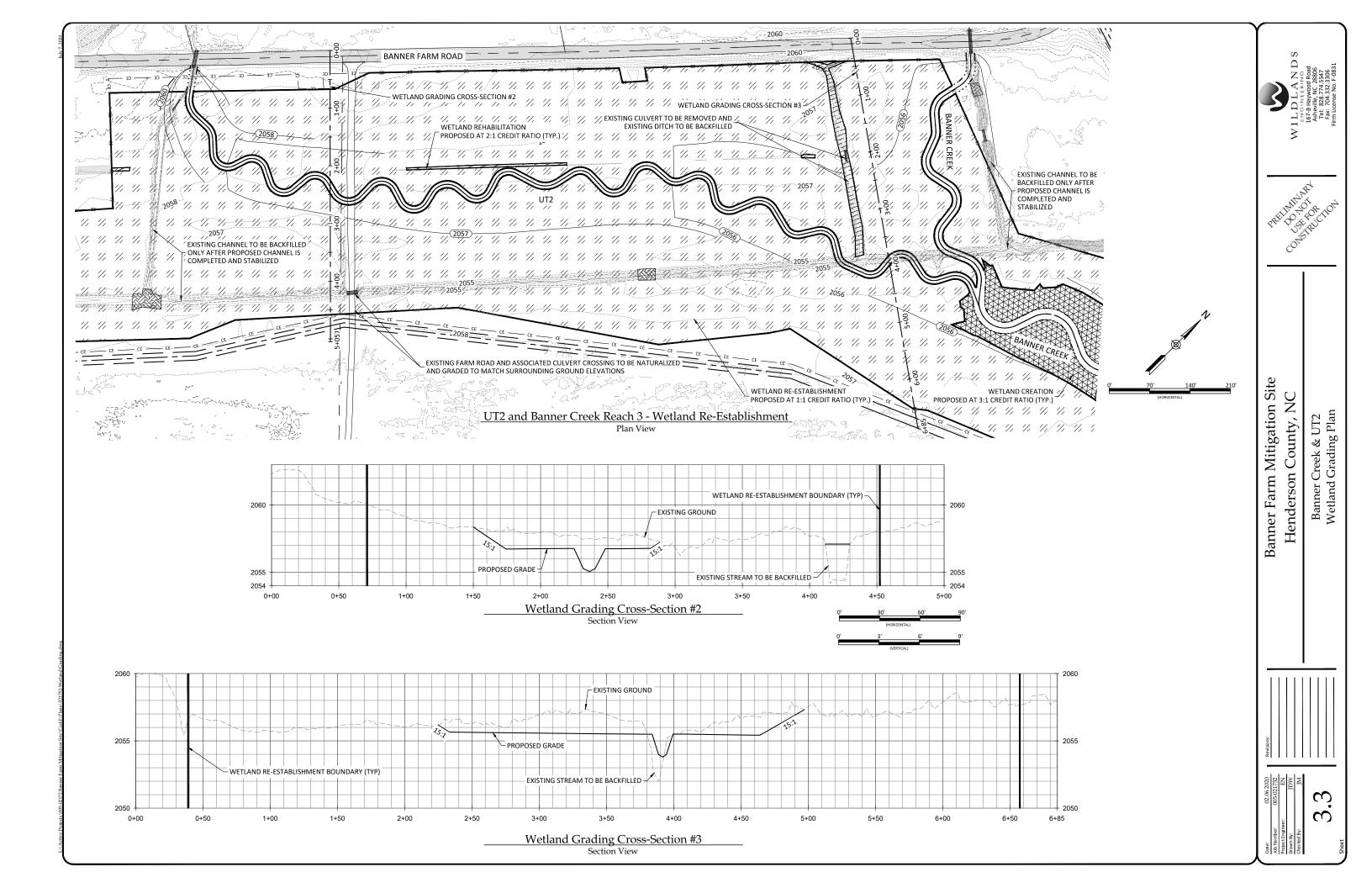


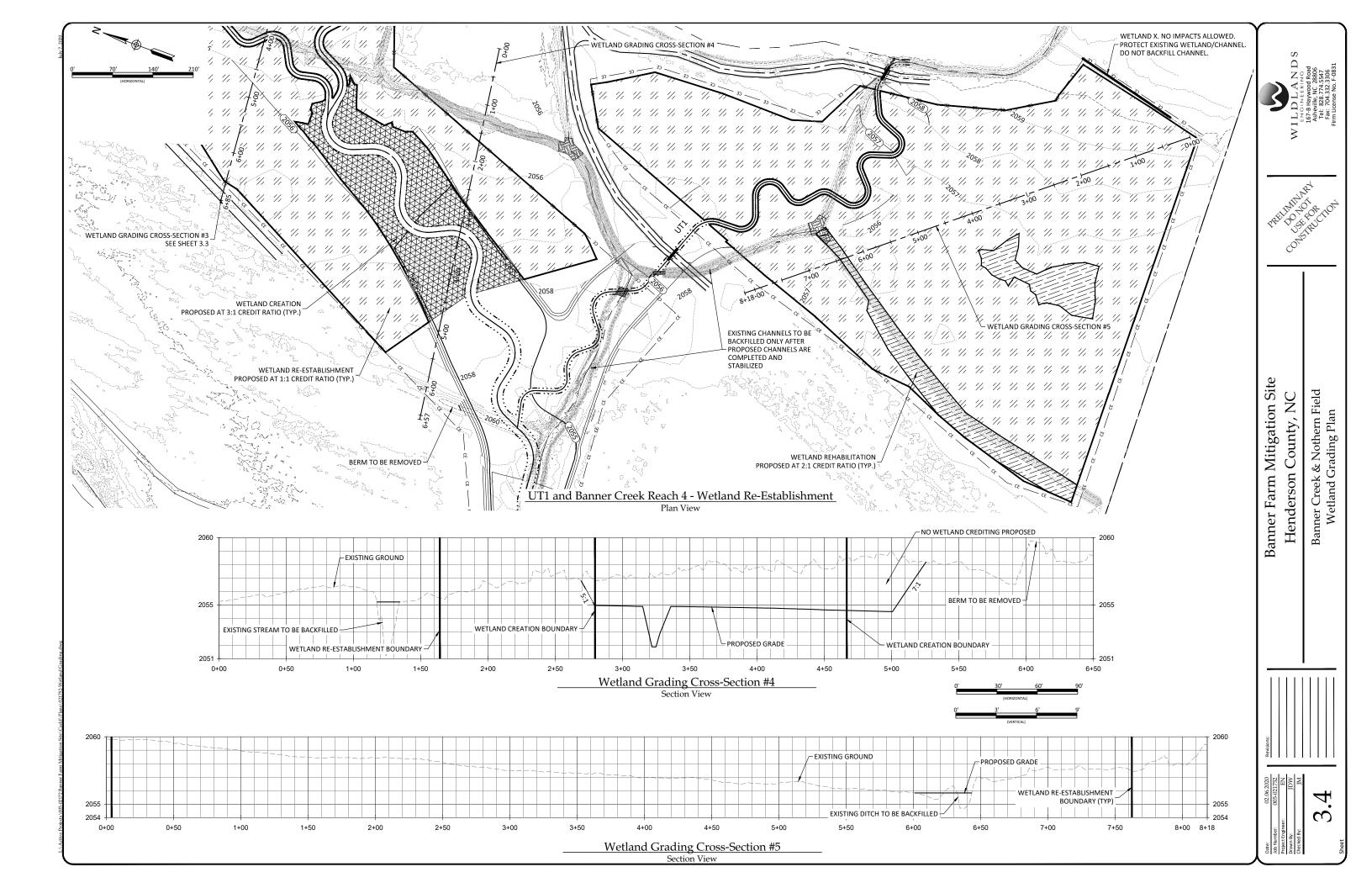


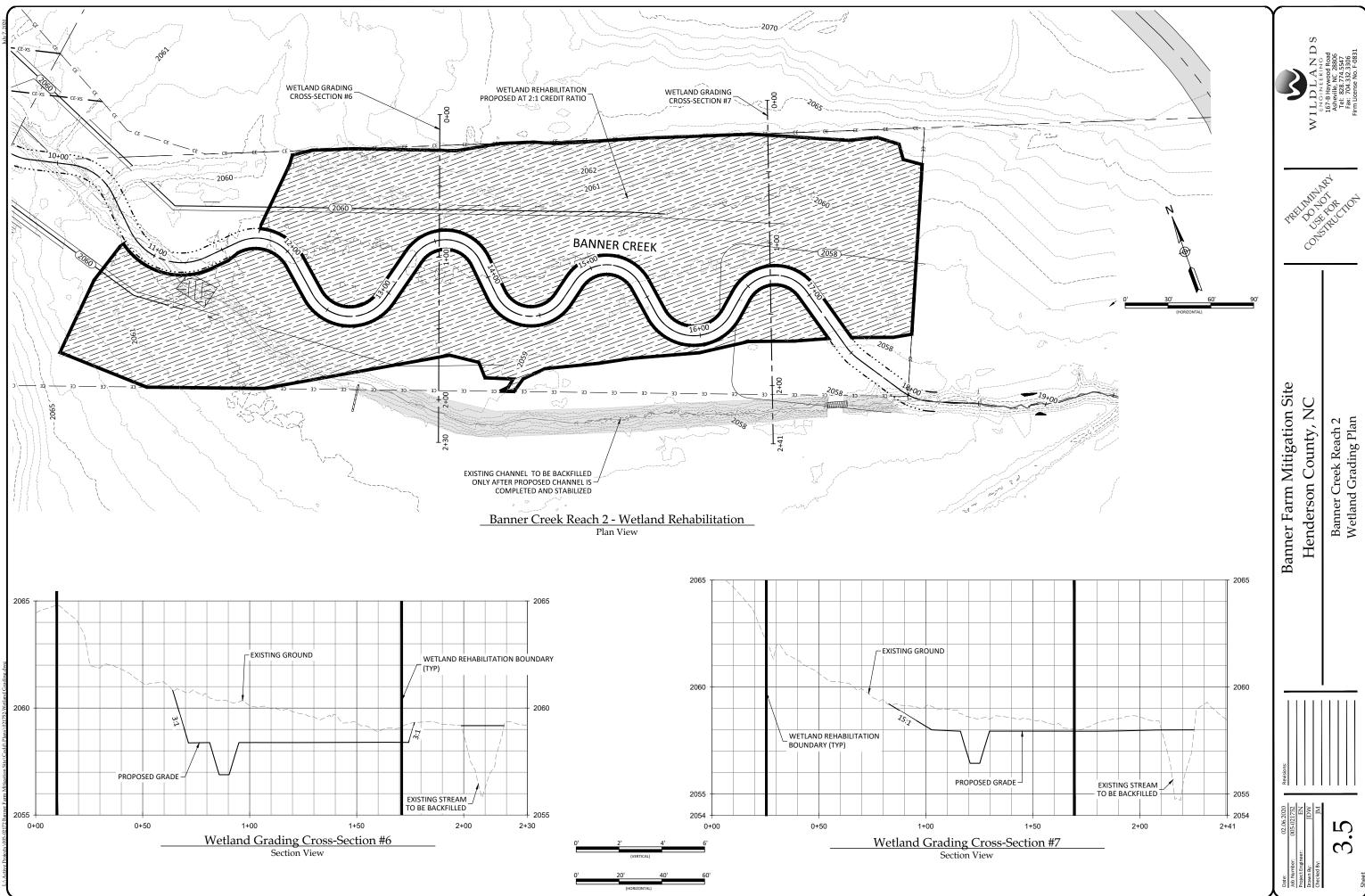












Open Area Buffer Planting

				ne Trees		
		B	are Root			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	# of Stems
Nyssa sylvatica	Black Gum	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	5%
Platanus occidentalis	Sycamore	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	15%
Betula nigra	River Birch	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	12%
Liriodendron tulipifera	Tulip Poplar	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	10%
Fraxinus pennsylvanica	Green Ash	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	4%
Prunus serotina	Black Cherry	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	9%
Quercus rubra	Red Oak	12ft.	6-12 ft.	0.25"-1.0"	Canopy	10%
Betula lenta	Sweet Birch	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	8%
Quercus falcata	Southern Red Oak	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	10%
Diospyros virginiana	Persimmon	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	5%
Fagus grandifolia	American Beech	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	2%
I					Total	90%
		A	lternates	1		
Acer saccharinum	Silver Maple	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	0%
Halesia caroliniana	Carolina Silverbell	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	0%
Fraxinus americana	White Ash	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	0%
					Total	0%

	Open Buffer Planting Zone Small Trees / Shrubs					
		В	are Root			
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	# of Stems
Alnus serrulata	Tag Alder	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	2%
Hamamelis virginiana	Witch Hazel	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	2%
Cornus florida	Flowering Dogwood	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	2%
Lindera benzoin	Spicebush	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	2%
Amelanchier arborea	Serviceberry	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	2%
					Total	10%

Notes: Transplants from on-site to be used at Designer's discretion for streambank and floodplain planting. Percentages of each species may be varied at Designer's discretion but shall not exceed 20% per each species. Designer may substitute container plantings or other plantings for bare roots.

Partially Vegetated Buffer Area Planting

Notes: used open area buffer planting list and percentages.

		\checkmark					
Wetland Planting Wetland Planting Zone Trees							
	Bare Root						
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Caliper Size	Stratum	# of Stems	
Platanus occidentalis	Sycamore	12 ft.	6-12 ft.	0.25"-1.0"	Canopy	15%	
Details steres	Divor Direh	12.6	C 12 ft	0.25" 1.0"	Canony	1 - 0/	

15%
5%
10%
15%
10%
15%
85%
0%
0%
0%
0%

Wetland Planting Zone Small Trees/Shrubs Bare Root						
						Species
Alnus serrulata	Tag Alder	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	5%
Carpinus caroliniana	Ironwood	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	2%
Lindera benzoin	Spicebush	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	2%
Asiminia triloba	Pawpaw	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	2%
llex opaca	American Holly	12 ft.	6-12 ft.	0.25"-1.0"	Sub-Canopy	2%
Sambucus canadensis	Elderberry	12 ft.	6-12 ft.	0.25"-1.0"	Shrub	2%
					Total	15%

Notes

Transplants from on-site to be used at Designer's discretion for streambank and floodplain planting. Percentages of each species may be varied at Designer's discretion but shall not exceed 20% per each species. Designer may substitute container plantings or other plantings for bare roots.

Rivercane Planting							
		Rivercan	e Planting Zon	e			
	Bare Root						
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Size	Stratum	% of Stems	
Arundinaria gigantea	Rivercane	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	100%	

(0)
Strea

Streambank Planting Zone							
	Live Stakes						
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Size	Stratum	% of Stems	
Salix nigra	Black Willow	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	10%	
Cornus amomum	Silky Dogwood	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	20%	
Salix sericea	Silky Willow	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	20%	
Physocarpos opulifolius	Ninebark	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	20%	
Cephalathus occidentalis	Buttonbush	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	15%	
Sambucus canadensis	Elderberry	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	15%	
					Total	100%	
		Herb	aceous Plugs				
Juncus effusus	Common Rush	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	40%	
Carex crinita	Fringed Sedge	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	20%	
Carex lurida	Lurid Sedge	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	20%	
Scirpus cyperinus	Woolgrass	5 ft	3-5 ft.	1.0"-2.0" plug	Herb	20%	
					Total	100%	

Streambank Planting Zone							
	Live Stakes						
Species	Common Name	Max Spacing	Indiv. Spacing	Min. Size	Stratum	% of Stems	
Salix nigra	Black Willow	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	10%	
Cornus amomum	Silky Dogwood	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	20%	
Salix sericea	Silky Willow	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	20%	
Physocarpos opulifolius	Ninebark	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	20%	
Cephalathus occidentalis	Buttonbush	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	15%	
Sambucus canadensis	Elderberry	8 ft.	6-8 ft.	0.5"-1.5" cal.	Shrub	15%	
					Total	100%	
		Herb	aceous Plugs				
Juncus effusus	Common Rush	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	40%	
Carex crinita	Fringed Sedge	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	20%	
Carex lurida	Lurid Sedge	5 ft.	3-5 ft.	1.0"- 2.0" plug	Herb	20%	
Scirpus cyperinus	Woolgrass	5 ft	3-5 ft.	1.0"-2.0" plug	Herb	20%	
					Total	100%	

Note: See detail for Live Staking instructions on streambanks.

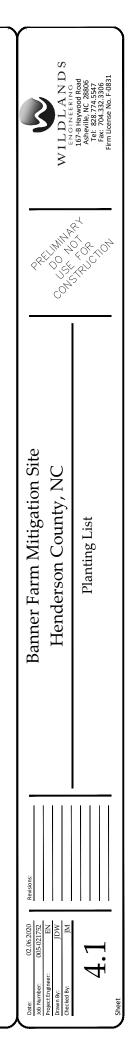
	Permanent Seeding					
	Riparian See	ding - Open Canopy				
	Pure Live S	eed (20 lbs/ acre)				
Approved Date	Species Name	Common Name	Stratum	Density (Ibs/acre		
All Year	Coleataenia anceps	Beaked Panicgrass	Herb	1.0		
All Year	Panicum virgatum	Switchgrass	Herb	1.0		
All Year	Chasmanthium latifolium	River Oats	Herb	1.0		
All Year	Rudbeckia hirta	Blackeyed Susan	Herb	1.0		
All Year	Coreopsis lanceolata	Lanceleaf Coreopsis	Herb	2.0		
All Year	Carex vulpinoidea	Fox Sedge	Herb	2.0		
All Year	Panicum clandestinum	Deertongue	Herb	4.0		
All Year	Elymus virginicus	Virginia Wild Rye	Herb	4.0		
All Year	Sorghastrum nutans	Indiangrass	Herb	3.0		
All Year	Bidens aristosa	Bur-Marigold	Herb	1.0		

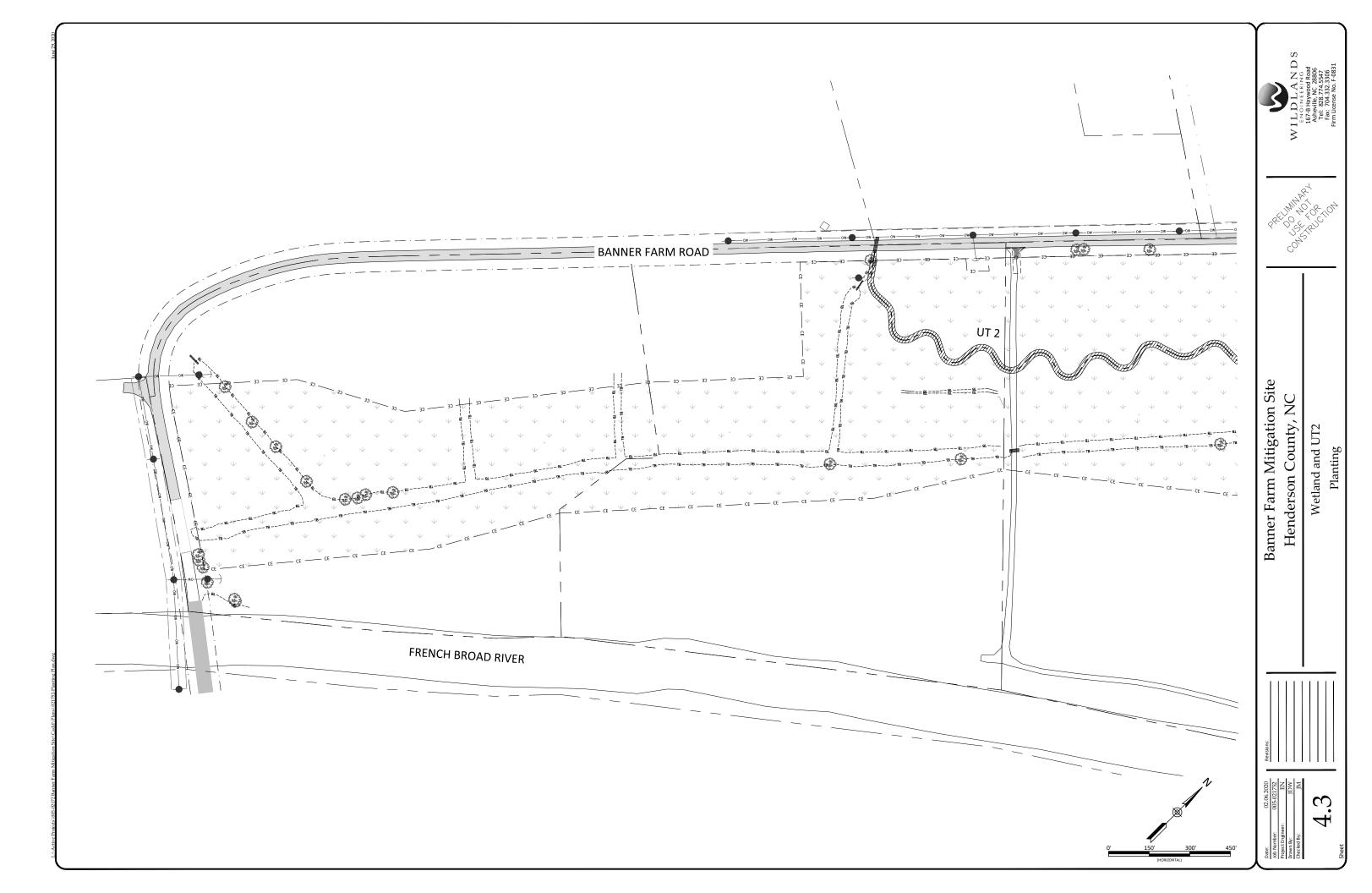
Wetland Seeding - Open Canopy Pure Live Seed (20 lbs/ acre)					
All Year	Coleataenia anceps	Beaked Panicgrass	Herb	3.0	
All Year	Chasmanthium latifolium	River Oats	Herb	2.0	
All Year	Carex vulpinoidea	Fox Sedge	Herb	2.0	
All Year	Elymus virginicus	Virginia Wild Rye	Herb	4.0	
All Year	Bidens aristosa	Bur-Marigold	Herb	3.0	
All Year	Tripsacum dactyloides	Eastern Gamagrass	Herb	3.0	
All Year	Carex lurida	Lurida Sedge	Herb	3.0	

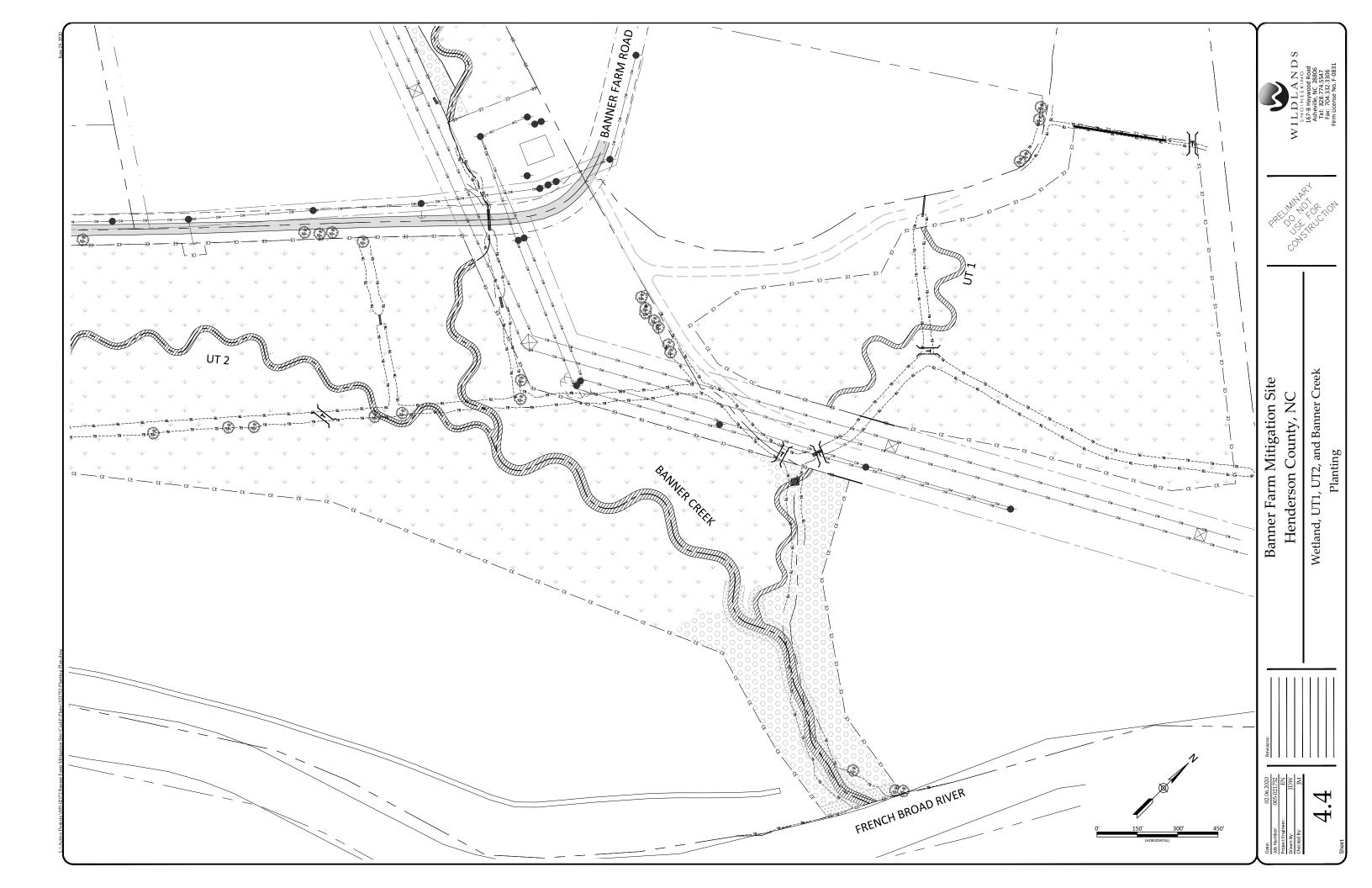
Notes: Apply Permanent Riparian seeding in all disturbed areas within Conservation Easement. Apply Permanent seeding in all other disturbed areas per specification.

Pasture Seeding					
Pure Live Seed (32 lbs/ac)					
Species Name	Common Name	lbs/acre			
Festuca arundinacea	Fescue (KY 31)	20			
Dactylis glomerata	Orchard Grass	12			

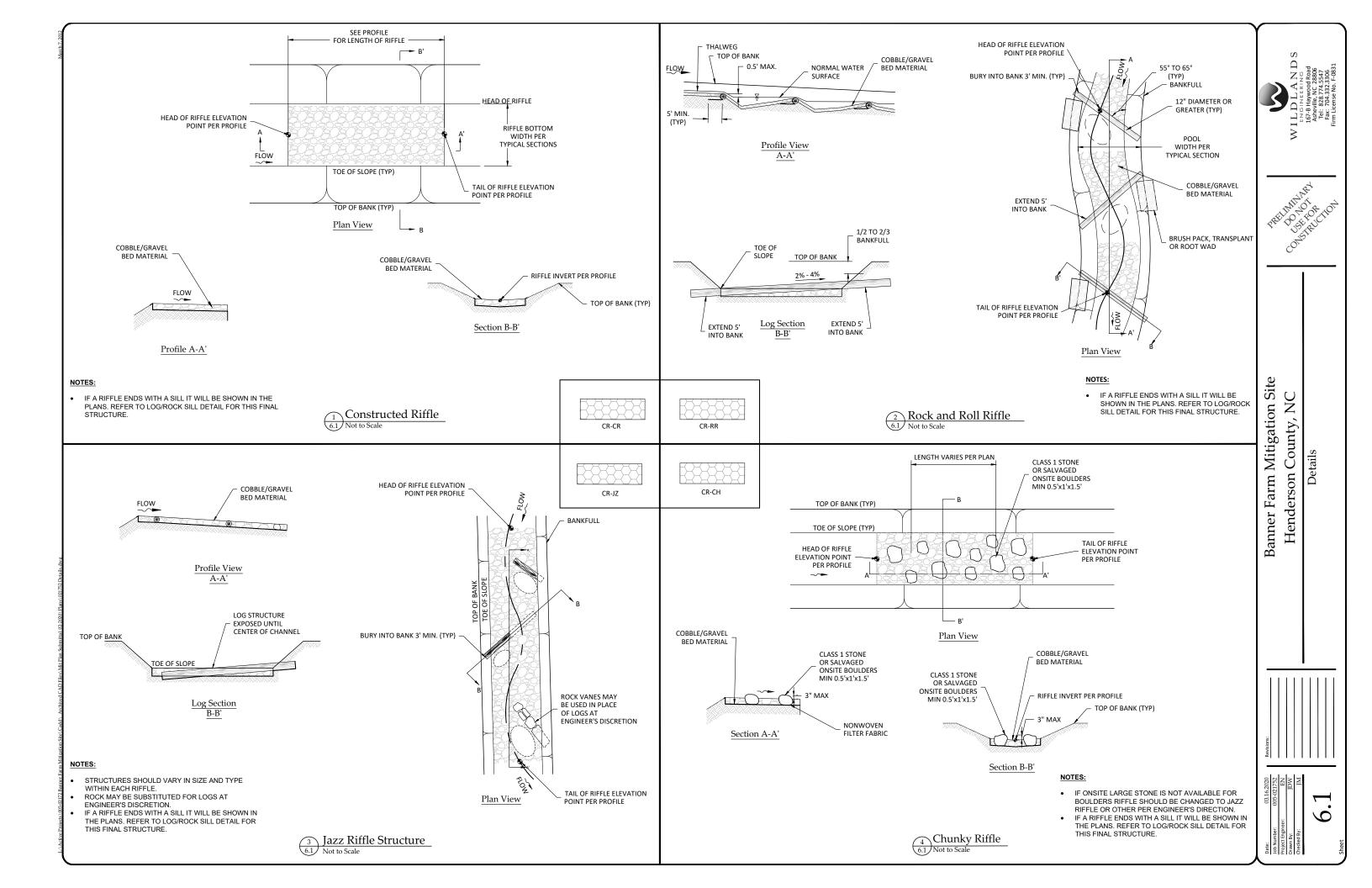
Notes:

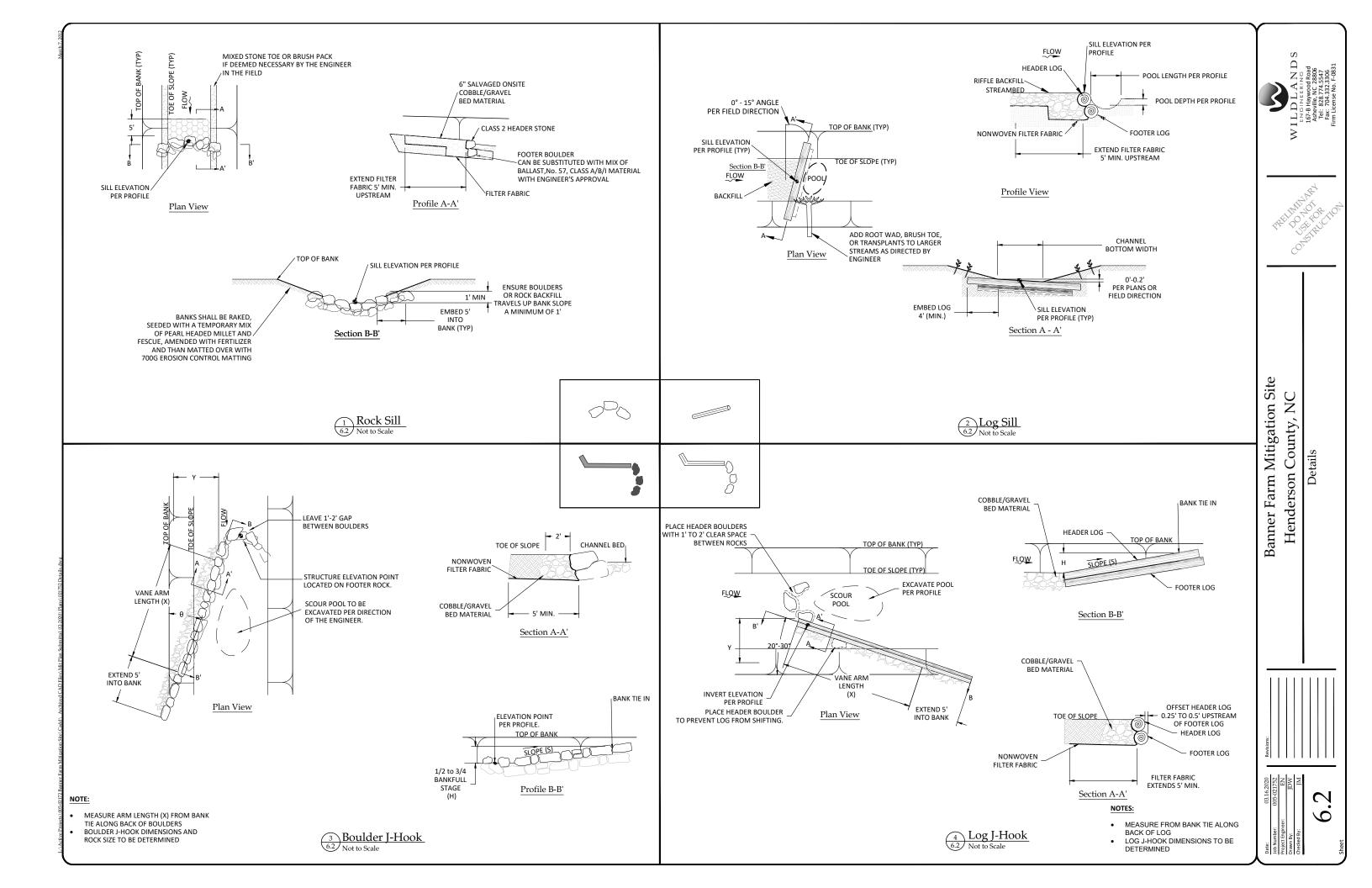

Riparian Corridor Planting (Streambanks)

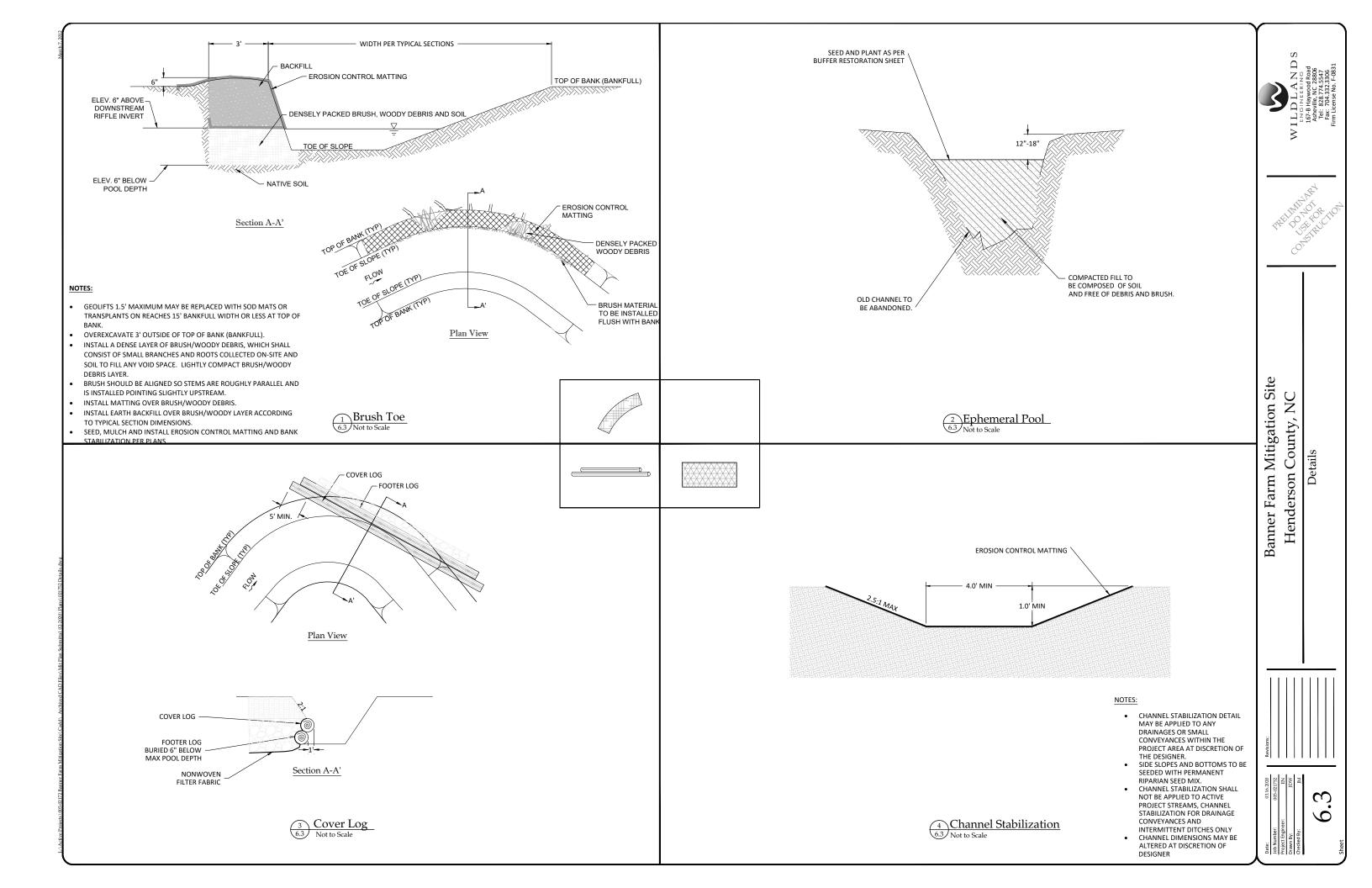

ambank Planting Zone

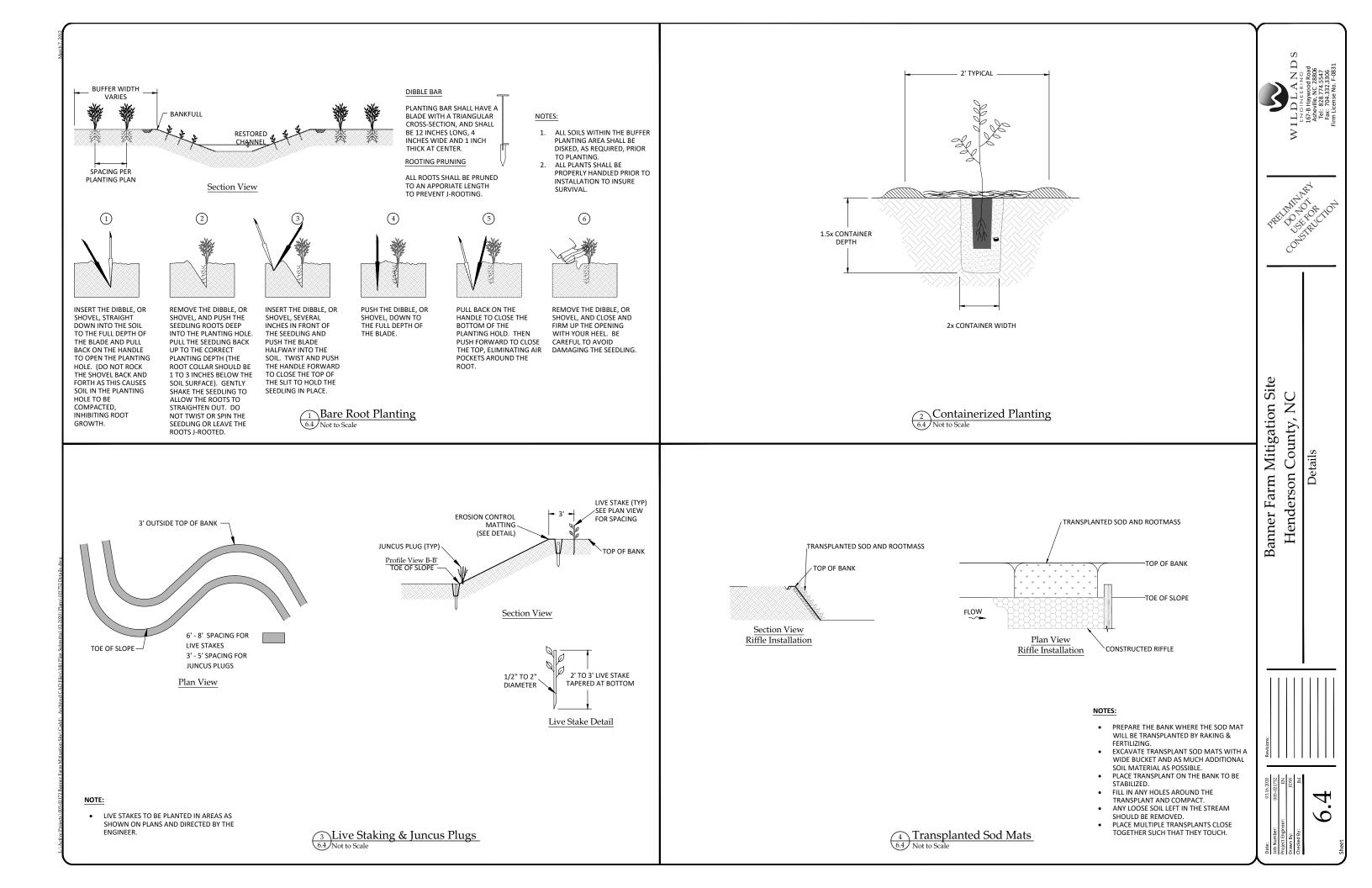

Pasture Seeding

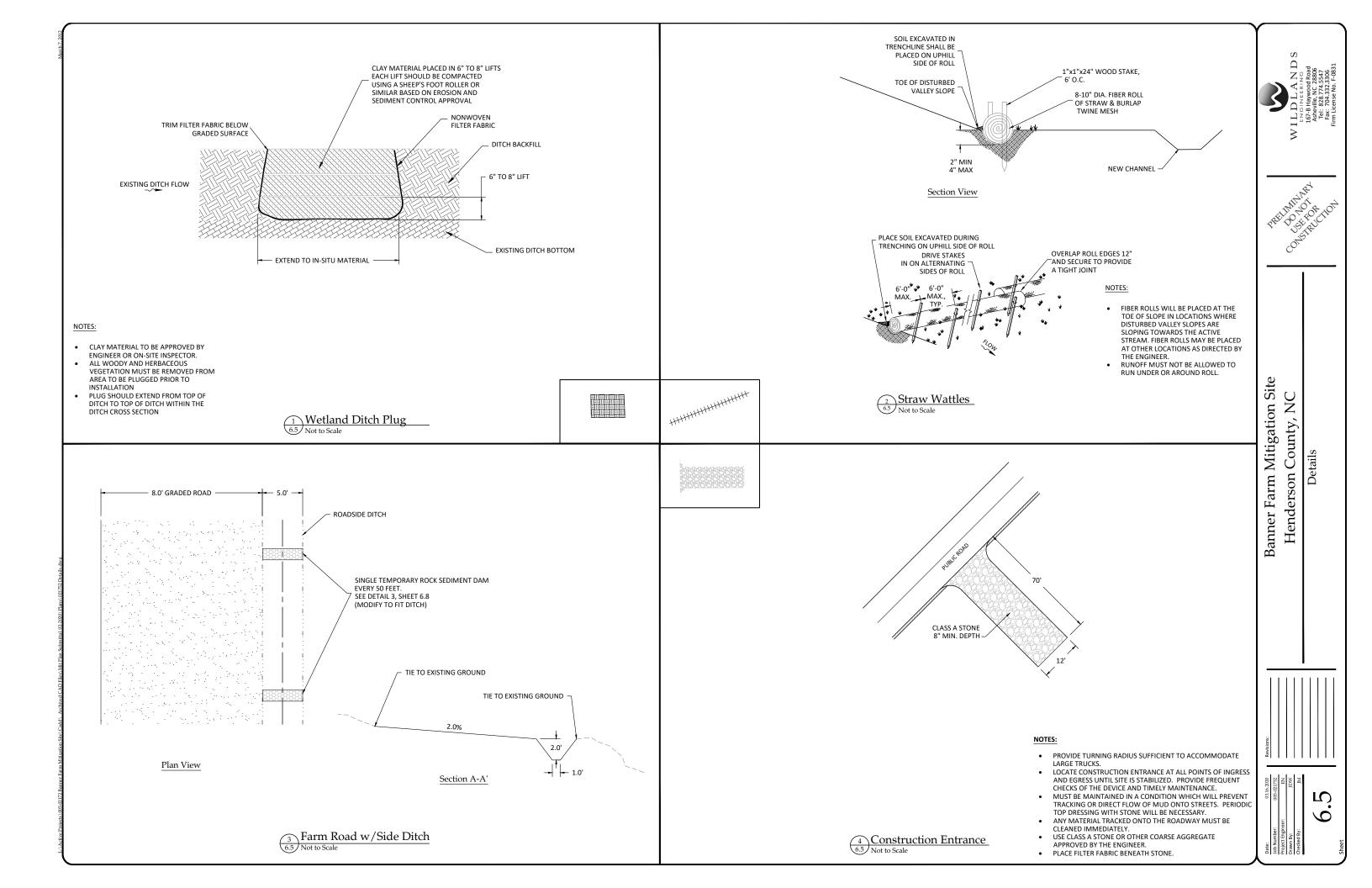
Apply Pasture Seeding for grading outside Conservation Easement, utility easements, and stream crossings. Install temporary seed and mulch with all permanent seed.

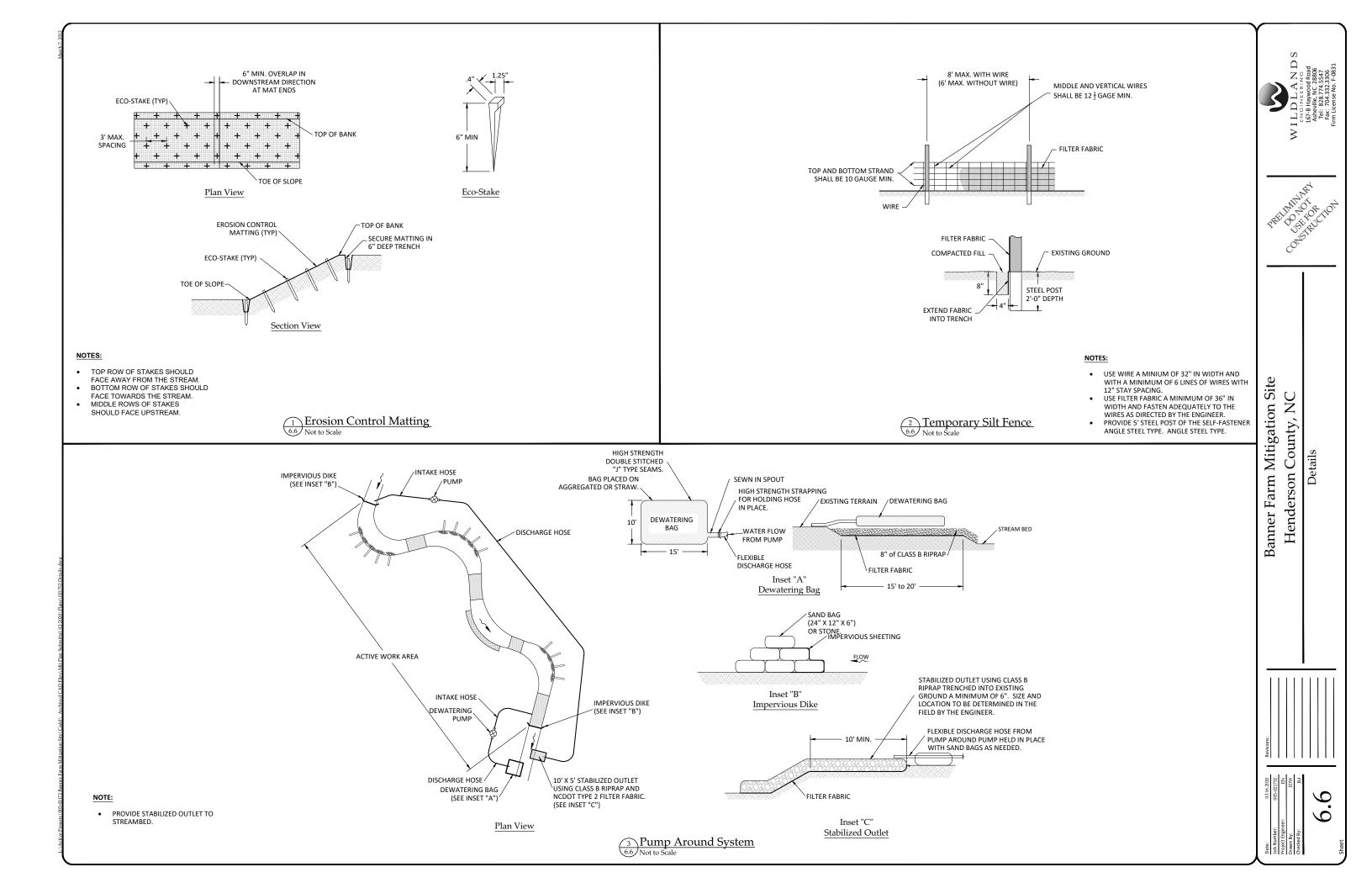


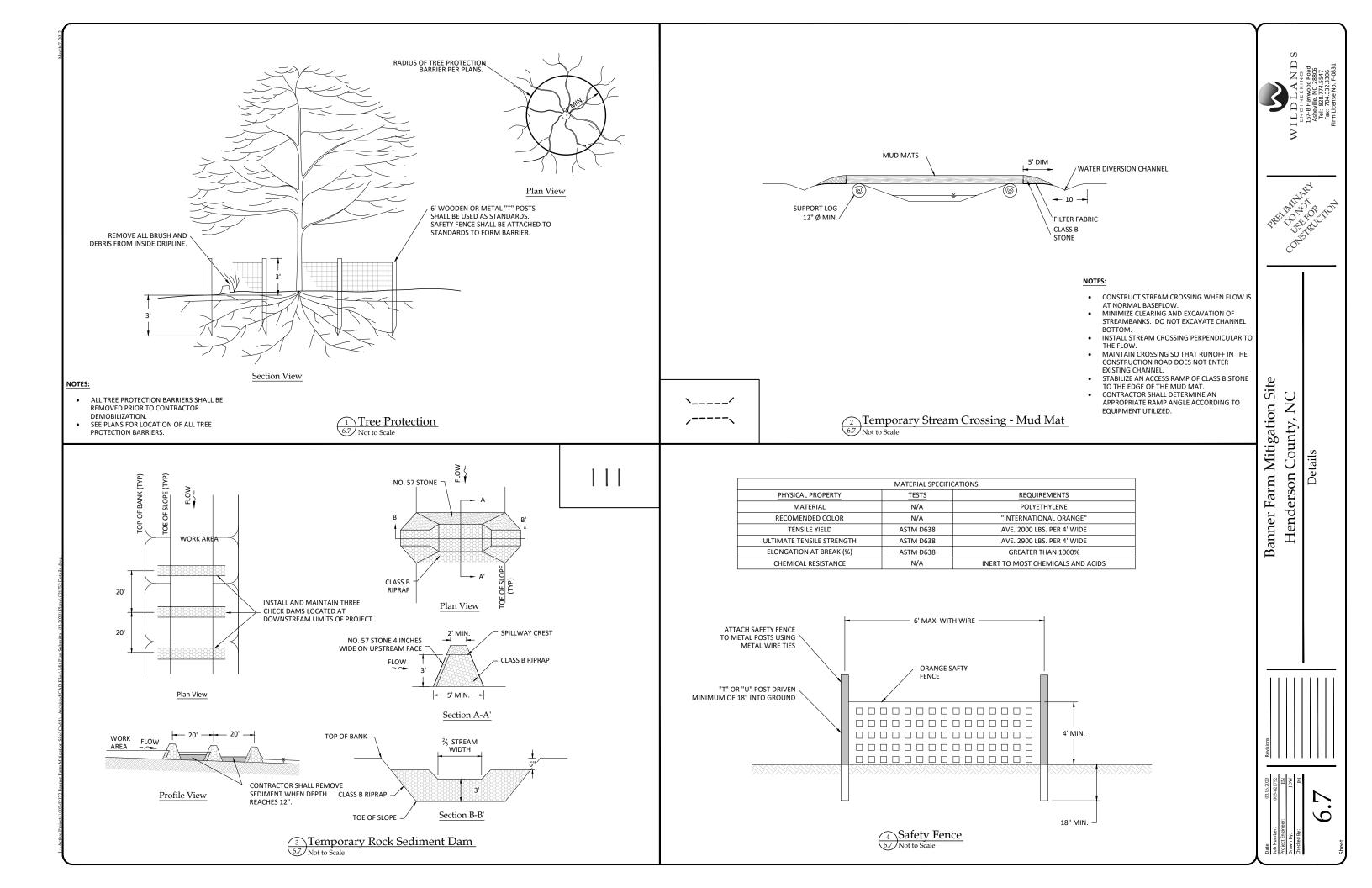


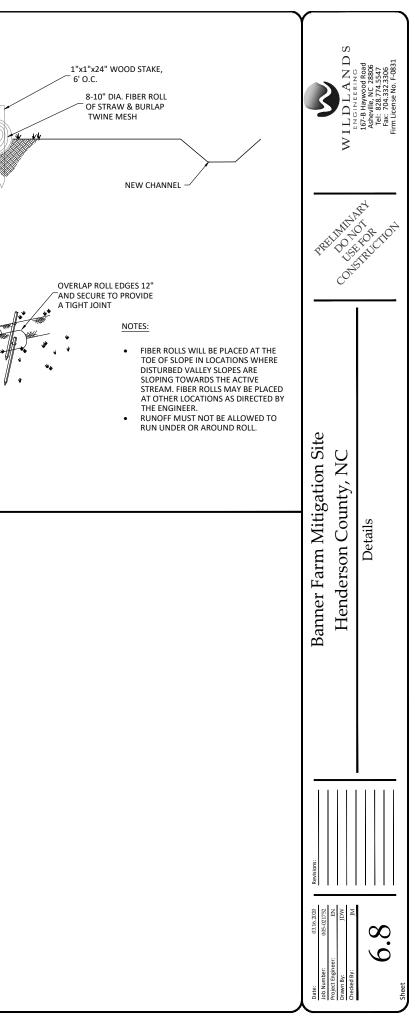












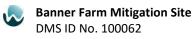
March 7 2012					SOIL EXCAVATED IN RENCHLINE SHALL BE PLACED ON UPHILL SIDE OF ROLL TOE OF DISTURBED VALLEY SLOPE
					2" MIN 4" MAX
					Section View
				PLA TRE	ACE SOIL EXCAVATED DURING ENCHING ON UPHILL SIDE OF ROLL DRIVE STAKES IN ON ALTERNATING SIDES OF ROLL 6'-0'' 6'-0'' MAX. MAX., TYP.
			+++++++++++++++++++++++++++++++++++++++	26.8	Straw Wattles
lans/021752 Details.dwg					
Jan Submittal 02-202015					
Archived CAD Files\Mit.F					
Mitigation Site\ Cadd \					
el 005-02172 Banner Farm					
L/Active Project					

APPENDIX 9 Invasive Species Plan

Appendix 9 Invasive Species Plan

Annual monitoring and semi-annual site visits will be conducted to assess the condition of the finished project. These site inspections may identify the presence of invasive vegetation. If, during the monitoring period, invasive species threaten the survivability of planted woody vegetation in an area that exceeds 1% of the planted easement acreage, the invasive species shall be treated. Smaller areas may be treated at the discretion of the project engineer and biologist, if deemed in the best interest of the Site. Generally, the treatment plan shall follow the below guidelines in Table 1 for common invasive species found in riparian areas; however, the treatment may be changed based on the professional judgement of the project engineer and biologist. For invasive species not listed in the below table that threaten the survivability of the planted woody vegetation, Wildlands shall notify DMS of the invasive species observed and the plan for treatment prior to treating the species. All invasive species treatment will be reported in the following year's monitoring plan.

Invasive Species	Recommended Removal Technique			
Honeysuckle (Lonicera japonica)	Small infestations of <i>L. japonica</i> can be pulled by hand. Monitor to remove any re-sprouts. Care should be taken to bag and remove the plants, including mature fruits to prevent re- establishment. Large infestations of <i>L. japonica</i> will usually require a combination of cut stump and foliar herbicide treatments. Where vines have grown into the tree canopy, cut each stem as close to the ground as possible. Treat the freshly cut surface of the rooted stem with a 25 percent solution of glyphosate or triclopyr. Remove the twining vines to prevent them from girdling and killing desirable vegetation. Groundcovers of <i>L. japonica</i> can be treated with a foliar solution of 2 percent glyphosate or triclopyr plus a 0.5 percent non-ionic surfactant to thoroughly wet all the leaves.			
Chinese Privet (<i>Ligustrum</i> <i>sinense</i>)	Thoroughly wet all leaves with one of the following herbicides in water with a surfactant: a glyphosate herbicide as a 3-percent solution (12 ounces per 3-gallon mix) in the late fall or early winter when safety to surrounding vegetation is desired, or elsewhere, Arsenal AC* as a 1-percent solution (4 ounces per 3-gallon mix). Backpack mist blowers can broadcast glyphosate as a 3-percent solution (12 ounces per 3-gallon mix) or Escort XP* at 1 ounce per acre (0.2 dry ounces per 3-gallon mix and 10 gallons per acre) during winter for safety to dormant hardwoods. Summer applications of glyphosate may not be as effective as other times and require a higher percent solution. The best time for Arsenal AC* and Escort XP* is summer to fall. For stems too tall for foliar sprays and when safety to surrounding vegetation is desired, apply a basal spray of Garlon 4 as a 20-percent solution (5 pints per 3-gallon mix) in a labeled basal oil product, vegetable oil or mineral oil with a penetrant, or fuel oil or diesel fuel (where permitted); or undiluted Pathfinder II. Elsewhere, apply Stalker* as a 6- to 9-percent solution (1.5 to 2 pints per 3-gallon mix) in a labeled basal oil product, vegetable oil or diesel fuel (where permitted); or undiluted Pathfinder II. elsewhere, apply Stalker* as a 6- to 9-percent solution (1.5 to 2 pints per 3-gallon mix) in a labeled basal oil product, vegetable oil or diesel fuel (where permitted); or undiluted Pathfinder II. elsewhere, apply Stalker* as a 6- to 9-percent solution (1.5 to 2 pints per 3-gallon mix) in a labeled basal oil product, vegetable oil or mineral oil with a penetrant, or fuel oil or diesel fuel (where permitted); or undiluted Pathfinder II. elsewhere, apply stalker* as a 6- to 9-percent solution (1.5 to 2 pints per 3-gallon mix) in a labeled basal oil product, vegetable oil or mineral oil with a penetrant, or fuel oil or diesel fuel (where permitted); or undiluted Pathfinder II. elsewhere, apply ounces per 3-gallon mix) or Velpar L* as a 10-percent solution in water (1			


Table 1. Invasive Species Treatment – Banner Farm Mitigation Site

Invasive Species	Recommended Removal Technique
	(anytime except March and April). An EZ-Ject tree injector can help to reach the lower part of the main stem; otherwise, every branching trunk must be hack-and-squirt injected.
Kudzu (Pueraria montana)	Small patches of <i>P. montana</i> that are not well-established can usually be eliminated by persistent weeding, mowing, or grazing during the growing season. The spread of a well-established infestation of <i>P. montana</i> can be controlled the same way, but cutting will typically not kill the roots of larger plants. For vines in tree canopies, cut the vines near the ground and apply a 50 percent solution of triclopyr to the stumps. This procedure remains effective at lower temperatures as long as the ground is not frozen. Large infestations can be effectively controlled with a foliar solution of 2 to 3 percent glyphosate or triclopyr plus a 0.5 percent non-ionic surfactant to thoroughly wet all leaves. The ambient air temperature should be above 65 degrees Fahrenheit. After the above ground vegetation is controlled and it is possible to dig and cut into the central root crown, apply a 50 percent solution of 0.75 percent clopyralid plus a 0.5 percent non-ionic surfactant. Monitor all treatments in subsequent years for re-sprouting.
Multiflora rose (<i>Rosa multiflora</i>)	<u>Foliar Spray Method</u> : Apply MSM at 1 ounce per acre between April and June. May to October apply a 4% solution of glyphosate and water plus a 0.5% non-ionic surfactant to thoroughly wet all leaves. Use a low pressure and coarse spray pattern to reduce spray drift damage to non-target species. Glyphosate is a non-selective systemic herbicide that may kill non-target partially-sprayed plants. <u>Cut Stump Method</u> : This control method should be considered when treating individual stems or where the presence of desirable species precludes foliar application. Stump treatments can be used if the ground is not frozen. <u>Glyphosate</u> : Horizontally cut stems at or near ground level. Immediately apply a 20% solution of glyphosate and water to the cut stump making sure to cover the outer 50% of the stump.
Golden bamboo (Phyllostachys aurea)	Small infestations can be controlled by repeatedly cutting or mowing the stems as close to the ground as possible several times during the growing season for successive years until the energy reserves in the rhizomes are exhausted. Large infestations of P. aurea can be killed by thoroughly wetting the foliage with a 2 percent solution of glyphosate and a 0.5 percent nonionic surfactant. Ideally, the plants should be sprayed in the late fall or early spring when temperatures are above 65 degrees Fahrenheit to ensure absorption of the chemical. Many native species are also dormant at this time. As long as the ground is not frozen, large plants can be killed by cutting them down near the ground and spraying the freshly cut stump with a 25 percent solution of glyphosate.
Callery Pear (Pyrus calleryana)	In areas with light infestation, small trees can be removed by hand when the soil is moist, with care taken to remove the entire root. When too numerous, foliar spraying with a 2 to 5 percent systemic herbicide solution of glyphosate or triclopyr can be utilized in mid to late summer. Medium to large trees should be cut down and stumps treated immediately with herbicide to prevent re-sprouting. Effective herbicides include glyphosate and triclopyr at a 25 to 50 percent solution. Less labor intensive control options include basal bark treatment and girdling. Basal bark treatment can be used for trees up to 6 inches in diameter by applying a 1:5 ratio of the ester formulation of triclopyr and basal oil in a 12-inch wide band around the entire circumference of the tree base. The most successful period for herbicide uptake is late winter/early spring or during the summer. Mature trees can be girdled during the spring and summer, by cutting through the bark around the entire trunk, 6 inches above the ground. Due to the persistent seed bank and potential for re-sprouting, subsequent treatments will be required for several years.

Invasive Species	Recommended Removal Technique
Tree of Heaven (Ailanthus altissima)	<u>Foliar Spray Method</u> : This method should be considered for large thickets of seedlings and small saplings where risk to nontarget species is minimal. Air temperature should be above 65°F to ensure absorption of herbicides. Glyphosate: Apply a 2% solution of glyphosate or triclopyr and water plus a 0.5% non-ionic surfactant to thoroughly wet all leaves. Use a low pressure and coarse spray pattern to reduce spray drift damage to non-target species. Glyphosate is a non-selective systemic herbicide that may kill non-target partially-sprayed plants. <u>Cut Stump Method</u> : This control method should be considered when treating individual trees or where the presence of desirable species precludes foliar application. Stump treatments can be used if the ground is not frozen. Triclopyr: Horizontally cut stems at or near ground level. Immediately apply a 25% solution of triclopyr and water to the cut stump making sure to cover the outer 20% of the stump. <u>Hack and Squirt and Stem Injection Methods</u> : To effectively treat larger saplings to mature trees using the hack and squirt methods, make cuts to the cambium spaced 1" apart and arranged horizontally around the stem. Immediately apply a 50% solution of triclopyr or 25% solution of glyphosate into the cuts. An EZ-Ject tree injector or other similar tool can be used to treat saplings to mature trees. These treatments should occur from mid-late summer to late fall.
Johnson Grass (Sorghum halepense)	 Recommended control procedures: Thoroughly wet all leaves with one of the following herbicides in water with a surfactant (June to October with multiple applications applied to regrowth). Recommendation for mature grass control: apply Outrider* as a broadcast spray at 0.75 to 2 ounces per acre (0.2 to 0.6 dry ounce per 3-gallon mix) plus a nonionic surfactant to actively growing Johnsongrass. For handheld and high-volume sprayers, apply 1 ounce of Outrider per 100 gallons of water plus a nonionic surfactant at 0.25 percent. Outrider is a selective herbicide that can be applied over the top of certain other grasses to kill Johnsongrass, or apply Plateau as a 0.25-percent solution (1 ounce per 3-gallon mix) when plants are 18 to 24 inches (45 to 60 cm) tall or larger. Recommendation for seedling control: apply Journey as a 0.3-percent solution (1.2 ounces per 3-gallon mix) before Johnsongrass sprouts and when desirable species are dormant or apply a glyphosate herbicide as a 2-percent solution (8 ounces per 3-gallon mix) directed at the infestation.

APPENDIX 10 Maintenance Plan

Appendix 10 Maintenance Plan

The site shall be visited semi-annually and a physical inspection of the site shall be conducted a minimum of once per year throughout the post-construction monitoring period until performance standards are met. Additionally, given the potential risk of deposition from backwater flooding of the French Broad River, the site shall be visited after major flooding events associated with the French Broad River to inspect the site and identify potential maintenance concerns. Site inspections may identify site components and features that require routine maintenance. Routine maintenance should be expected most often in the first two years following site construction and after major floods associated with the French Broad River and may include the following:

Component/ Feature	Maintenance through project close-out
Stream	Routine channel maintenance and repair activities may include chinking of in-stream structures to prevent piping, securing of loose coir matting, and supplemental installations of live stakes and other target vegetation along the channel – these shall be conducted where success criteria are threatened or at the discretion of the Designer. Areas where storm water and floodplain flows intercept the channel may also require maintenance to prevent bank failures and head-cutting. Beaver activity will be monitored and beaver dams on project streams will typically be removed, at the discretion of the Designer, during the monitoring period to allow for bank stabilization and stream development outside of this type of influence. Deposition within stream channels after French Broad River flood events will be monitored to ensure channels maintain active bed and banks. Minor channel maintenance may be performed if deposition is threatening the geomorphic processes implemented during the restoration design.
Wetlands	Routine wetland maintenance and repair activities may include supplemental installations of target vegetation within the wetland. Areas where storm water and floodplain flows intercept the wetland may also require maintenance to prevent scour that adversely and persistently threatens wetland habitat or function.
Vegetation	Vegetation shall be maintained to ensure the health and vigor of the targeted community. Routine vegetation maintenance and repair activities may include supplemental planting, pruning, mulching, and fertilizing. Exotic invasive plant species requiring treatment per the Invasive Species Treatment Plan (Appendix 9) shall be treated in accordance with that plan and with NC Department of Agriculture (NCDA) rules and regulations. If deposition associated with French Broad River flooding impedes early vegetation growth, supplemental planting may be performed to ensure the health and vigor of the target community.
Site boundary	Site boundaries shall be identified in the field to ensure clear distinction between the mitigation site and adjacent properties. Boundaries may be identified by fence, marker, bollard, post, tree-blazing, or other means as allowed by site conditions and/or conservation easement. Boundary markers disturbed, damaged, or destroyed will be repaired and/or replaced on an as-needed basis.

Table 1. Maintenance Plan – Banner Farm Mitigation Site

APPENDIX 11 Credit Release Schedule

Appendix 11 - Credit Release Schedule

All credit releases will be based on the total credit generated as reported by the as-built survey of the mitigation site. Under no circumstances shall any mitigation project be debited until the necessary Department of the Army (DA) authorization has been received for its construction or the District Engineer (DE) has otherwise provided written approval for the project in the case where no DA authorization is required for construction of the mitigation project. The DE, in consultation with the Interagency Review Team (IRT), will determine if performance standards have been satisfied sufficiently to meet the requirements of the release schedules below. In cases where some performance standards have not been met, credits may still be released depending on the specifics of the case. Monitoring may be required to restart or be extended, depending on the extent to which the site fails to meet the specified performance standard. The release of project credits will be subject to the criteria described as follows:

Credit Release Milestone	Monitoring Year	Credit Release Activity	Interim Release	Total Released
1	0	Site Establishment	0%	0%
2	0	Completion of all initial physical and biological improvements made pursuant to the Mitigation Plan – see requirements below		30%
3	1	Year 1 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	40%
4	2	Year 2 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	50%
5	3	Year 3 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	60%
6	4*	Year 4 monitoring report demonstrates that channels are stable and interim performance standards have been met	5%	65% (75%**)
7	5	Year 5 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	75% (85%**)
8	6*	Year 6 monitoring report demonstrates that channels are stable and interim performance standards have been met	5%	80% (90%**)
9	7	Year 7 monitoring report demonstrates that channels are stable and interim performance standards have been met	10%	90% (100%**)

Table A: Credit Release Schedule – Stream	n Credits – Banner Farms Mitiaation Site

*Vegetation data may not be required with monitoring reports submitted during these monitoring years unless otherwise required by the Mitigation Plan or directed by the NCIRT.

**10% reserve of credits to be held back until the bankfull event performance standard has been met

Table B: Credit Release Schedule –	Wetland Credits – Banner Farms Mitigation Site

Credit Release Milestone	Monitoring Year	Credit Release Activity		Total Released
1	0	Site Establishment	0%	0%
2	0	Completion of all initial physical and biological improvements made pursuant to the Mitigation Plan – see requirements below	30%	30%
3	1	Year 1 monitoring report demonstrates that interim performance standards have been met	10%	40%

Credit Release Milestone	Monitoring Year	Credit Release Activity	Interim Release	Total Released
4	2	Year 2 monitoring report demonstrates that interim performance standards have been met	10%	50%
5	3	Year 3 monitoring report demonstrates that interim performance standards have been met	15%	65%
6	4*	Year 4 monitoring report demonstrates that interim performance standards have been met	5%	70%
7	5	Year 5 monitoring report demonstrates that interim performance standards have been met	15%	85%
8	6*	Year 6 monitoring report demonstrates that interim performance standards have been met	5%	90%
9	7	Year 7 monitoring report demonstrates that interim performance standards have been met	10%	100%

*Vegetation data may not be required with monitoring reports submitted during these monitoring years unless otherwise required by the Mitigation Plan or directed by the NCIRT.

1.1 Initial Allocation of Released Credits

For this NCDMS project, no initial release of credits is provided. To account for this, the 15% credit release typically associated with the site establishment is held until completion of all initial physical and biological improvements made pursuant to the Mitigation Plan. In order for NCDMS to receive the 30% release (shown in Tables A and B as Milestone 2), they must comply with the credit release requirements stated in Section IV(I)(3) of the approved NCDMS instrument.

1.2 Subsequent Credit Releases

All subsequent credit releases must be approved by the DE, in consultation with the IRT, based on a determination that required performance standards have been achieved.

The following conditions apply to credit release schedules:

- a. A reserve of 10% of site's total stream credits will be release after four bankfull events have occurred, in separate years, provided the channel is stable and all other performance standards are met. In the event that less than four bankfull events occur during the monitoring period, release of these reserve credits is at the discretion of the NCIRT.
- b. After the second milestone, the credit releases are scheduled to occur on an annual basis, assuming that the annual monitoring report has been provided to the USACE in accordance with Section IV (General Monitoring Requirements) of this document, and that the monitoring report demonstrates that interim performance standards are being met and that no other concerns have been identified on-site during the visual monitoring. All credit releases require written approval from the USACE.
- c. The credits associated with the final credit release milestone will be released only upon a determination by the USACE, in consultation with the NCIRT, of functional success as defined in the Mitigation Plan.

As projects approach milestones associated with credit release, the DMS will submit a request for credit release to the DE along with documentation substantiating achievement of criteria required for release to occur. This documentation will be included with the annual monitoring report.

APPENDIX 12 Financial Assurances

Appendix 12 - Financial Assurances

Pursuant to Section IV H and Appendix III of the Division of Mitigation Service's In-Lieu Fee Instrument dated July 28, 2010, the North Carolina Department of Environment and Natural Resources has provided the US Army Corps of Engineers Wilmington District with a formal commitment to fund projects to satisfy mitigation requirements assumed by DMS. This commitment provides financial assurance for all mitigation projects implemented by the program.

APPENDIX 13 IRT Meeting Minutes

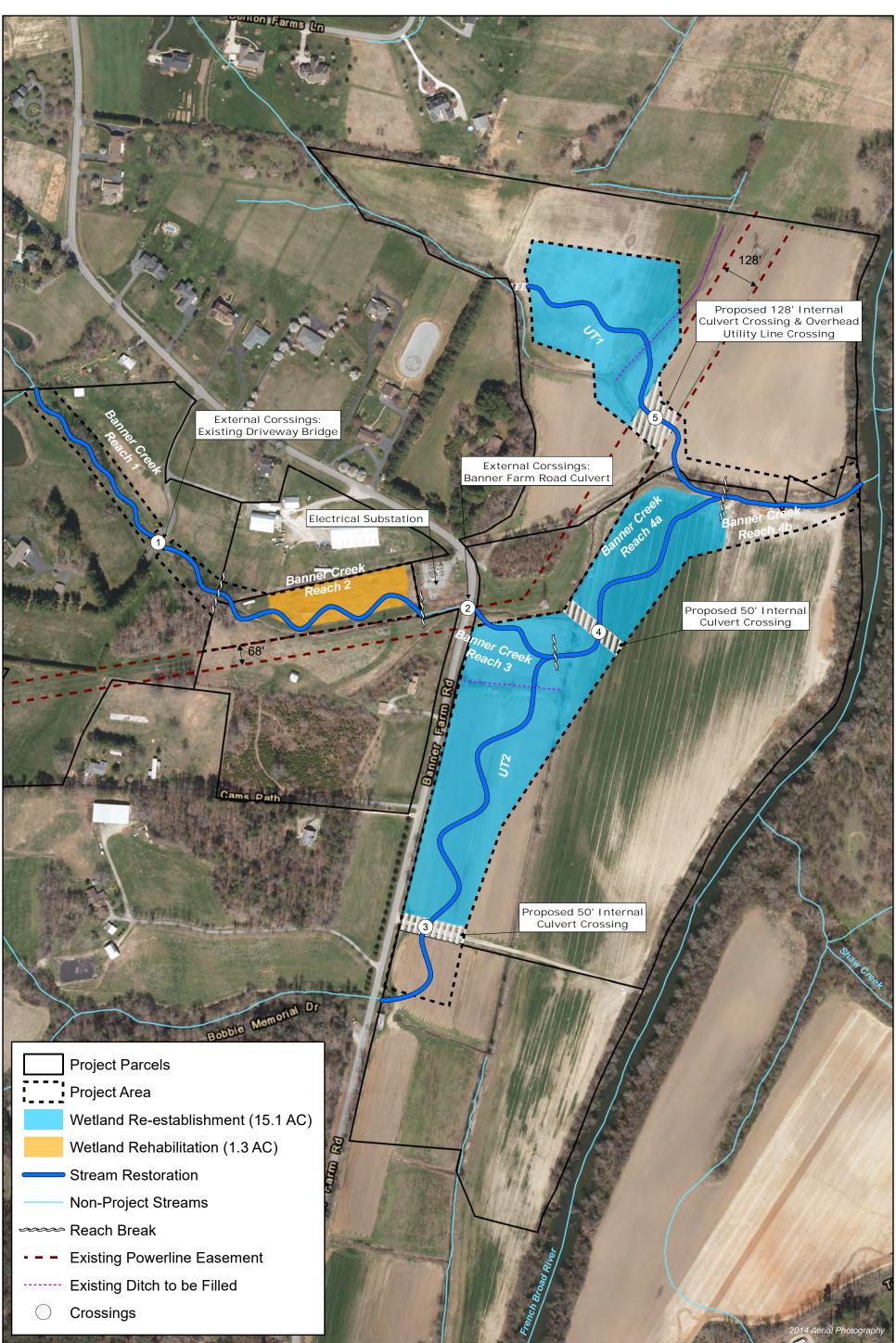
MEETING NOTES

MEETING:	Post-Contract IRT Site Walk Banner Farm Mitigation Site		
	French Broad River Basin 06010105; Henderson County, NC		
	DEQ Contract No. 7530		
	Wildlands Project No. 005-02172		
DATE:	Tuesday, July 31, 2018 @ 10:00 AM – 12:00 PM		
LOCATION:	54 Banner Farm Road Mills River, NC 28759		

Attendees

Todd Tugwell, USACE Mac Haupt, NC Department of Environmental Quality Matthew Reid, DMS Project Manager Paul Wiesner, DMS Harry Tsomides, DMS Kirsten Ullman, DMS Shawn Wilkerson, Wildlands Engineering Eric Neuhaus, Wildlands Engineering

Materials


- Wildlands Engineering Technical Proposal dated 2/8/2018 in response to RFP #16-007334
- Preliminary Hydric Soil Investigation dated 11/20/2017 prepared by Soil & Environmental Consultants

Meeting Notes

- 1. Wildlands and agency personnel met near Banner Creek Reach 4a and Wildlands gave an overview of the project, outlining stream and wetland restoration approaches. Much of the area proposed for wetland restoration was in active row cropping (corn).
- 2. The group walked down Banner Creek Reach 4a until its confluence with UT1. The existing culvert crossing along UT1 had been clogged with sand from a previous storm event where the French Broad River had gotten out of bank. The clogged culvert was backing up UT1 as well as the ditch that drains the northeast area proposed for wetland restoration.
- 3. There was concern expressed that the area proposed for wetland re-establishment adjacent to UT1 may delineate as jurisdictional wetland based on the hydrology and vegetation seen on-site during the day of the visit. It was evident that this hydrology was only a result of the clogged culvert, and that once the landowner performs regular maintenance which includes clearing the culvert, the proposed wetland area will lack sufficient hydrology and vegetation required to jurisdictionally delineate.
- 4. Multiple soil borings were taken within the wetland area along UT1, and generally agency personnel agreed with the provided soils report and potential for wetland restoration

- 5. The group continued upstream along UT2 towards Banner Farm Road. At three locations, the group stopped to look at soil borings within the proposed wetland area. General consensus was that the soils along UT2 were not as hydric as along UT1, but there was viable potential for wetland restoration along UT2.
- 6. There were questions regarding the proposed restoration work wetting up adjacent fields and the potential for a hydrologic trespass issue in the future. Wildlands noted that included with the technical proposal for the site was an amendment to the option agreement signed by the participating property owners that acknowledges the potential for increased water table elevations in adjacent agricultural fields.
- 7. Based on the #6 above, there was discussion around expanding the wetland restoration portion of the project to include adjacent fields. Wildlands noted that they would investigate this potential further and decide if this was something there was interest in pursuing.
- 8. At the upstream end of UT2 (existing Banner Farm Road crossing), it was asked if the parcel access, existing barn structure, and the existing farm crossing could be reworked to eliminate the farm crossing in the proposed site condition. Wildlands agreed that this would be the best approach if possible and noted that they will discuss options with the property owner to determine if removal of the farm crossing at that location is possible.
- 9. The walk continued upstream of Banner Farm Road along Banner Creek Reach 2. A soil sample was taken within the proposed wetland rehabilitation area to look at potential for hydric soils. Agency personnel agreed with Wildlands conclusion that the area would jurisdictionally delineate and noted that some evidence of an increase in wetland hydrology may be required for the area to be considered wetland rehabilitation and that 2:1 credit might be more applicable than 1.5:1. Wildlands does not see this as an issue as the adjacent stream (Banner Creek Reach 2) will be restored and reconnected to the floodplain wetland, which will increase wetland hydrology but understands the concern.
- 10. The walk continued upstream along Banner Creek Reach 1. Discussion along Banner Creek Reach 1 was centered around whether the reach should be proposed for restoration or enhancement I based on its current condition and the proposed work. Ultimately, it was determined that Wildlands would look at all the data, including the existing condition of the stream, the removal of an abandoned crossing, and the stream grades required to tie to the upstream end of the project and pass through the existing driveway culvert, to propose the appropriate approach for Banner Creek Reach 1.

0	300 Feet

Figure 5 - Concept Map Banner Farm Mitigation Site French Broad 06010105

Henderson County, NC